开源项目教程:Awesome-LLM-Reasoning-Openai-o1-Survey
1. 项目目录结构及介绍
Awesome-LLM-Reasoning-Openai-o1-Survey
项目是一个关于 OpenAI o1 相关研究的资料汇总,它包含了大量的文献调研和开源论文。以下是项目的目录结构:
.
├── LICENSE
├── README.md
├── papers
│ ├── Complex_Logical_Reasoning
│ ├── Generative_Language_Modeling_for_Automated_Theorem_Proving
│ ├── Hypothesis_Search_Inductive_Reasoning_with_Language_Models
│ ├── Phenomenal_Yet_Puzzling_Testing_Inductive_Reasoning_Capabilities_of_Language_Models_with_Hypothesis_Refinement
│ ├── Training_Verifiers_to_Solve_Math_Word_Problems
│ ├── To_CoT_or_not_to_CoT_Chain-of-thought_Helps_Mainly_on_Math_and_Symbolic_Reasoning
│ ├── STaR_Self-Taught_Reasoner_Bootstrapping_Reasoning_With_Reasoning
│ ├── Quiet-STaR_Language_Models_Can_Teach_Themselves_to_Think_Before_Speaking
│ ├── Training_Chain-of-thought_via_Latent-variable_Inference
│ ├── Chain-of-thought_Reasoning_without_Prompting
│ ├── Mutual_Reasoning_Makes_Smaller_LLMs_Stronger_Problem-Solvers
│ ├── Large_Language_Monkeys_Scaling_Inference_Compute_with_Repeated_Sampling
│ ├── Scaling_LLM_Test-Time_Compute_Optimally_Can_be_More_Effective_than_Scaling_Model_Parameters
│ ├── Training_Language_Models_to_Self-Correct_via_Reinforcement_Learning
│ ├── From_Medprompt_to_o1_Exploration_of_Run-Time_Strategies_for_Medical_Challenge_Problems_and_Beyond
│ ├── Self-play_Learning
│ ├── Language_Models_Can_Teach_Themselves_to_Program_Better
│ ├── Large_Language_Models_Can_Self-Improve
│ ├── Self-Play_Fine-Tuning_Converts_Weak_Language_Models_to_Strong_Language_Models
│ ├── Self-Play_Preference_Optimization_for_Language_Model_Alignment
│ ├── Scalable_Online_Planning_via_Reinforcement_Learning_Fine-Tuning
│ ├── Generative_Verifiers_Reward_Modeling_as_Next-Token_Prediction
│ ├── Accessing_GPT-4_level_Mathematical_Olympiad_Solutions_via_Monte_Carlo_Tree_Self-refine_with_LLaMa-3_8B
│ ├── Interpretable_Contrastive_Monte_Carlo_Tree_Search_Reasoning
│ ├── Solving_Math_Word_Problems_with_Process-and_Outcome-based_Feedback
│ ├── Thinking_Fast_and_Slow_With_Deep_Learning_and_Tree_Search
│ ├── Let’s_Verify_Step_by_Step
│ ├── OVM_Outcome-supervised_Value_Models_for_Planning_in_Mathematical_Reasoning
│ ├── LLM_Critics_Help_Catch_LLM_Bugs
│ ├── Self-critiquing_Models_for_Assisting_Human_Evaluators
│ ├── Improve_Mathematical_Reasoning_in_Language_Models_by_Automated_Process_Supervision
│ └── Q*_Improving_Multi-step_Reasoning_for_LLMs_with_Deliberative_Planning
每个子目录下包含了相关论文的链接和简要介绍。
2. 项目的启动文件介绍
该项目的启动主要是通过查看 README.md
文件来了解项目的基本信息和目的。README.md
文件通常包含以下内容:
- 项目的背景和目的
- 项目包含的资料和文献
- 如何浏览和使用这些资料
- 贡献者信息和项目的维护状态
用户可以通过标准的 Markdown 文件查看器打开 README.md
文件来启动对项目的了解。
3. 项目的配置文件介绍
在这个项目中,并没有特定的配置文件。因为该项目主要是作为一个资料库,用户不需要进行特定的配置。如果用户需要将项目集成到自己的开发环境中,可能需要根据自己的需求创建配置文件。通常,这类配置文件可能包括:
- 数据存储配置
- API密钥或其他认证信息
- 环境变量设置
由于本项目是一个静态的资料库,因此不需要复杂的配置文件。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考