Simba知识管理系统开源项目教程
1. 项目介绍
Simba是一个开源的便携式知识管理系统(KMS),专为无缝集成检索增强生成(RAG)系统而设计。它拥有直观的用户界面、模块化架构和强大的软件开发工具包(SDK),简化了知识管理的过程,使开发者能够专注于构建先进的AI解决方案。
2. 项目快速启动
安装
首先,确保您已经安装了以下依赖项:
- Python 3.11+
- Poetry
- Redis 7.0+
- Node.js 20+
- Git
- (可选)Docker
安装Simba核心:
pip install simba-core
或者克隆并设置仓库:
git clone https://github.com/GitHamza0206/simba.git
cd simba
poetry config virtualenvs.in-project true
poetry install
source .venv/bin/activate
配置
创建一个.env
文件并添加以下内容:
OPENAI_API_KEY=your_openai_api_key
REDIS_HOST=localhost
CELERY_BROKER_URL=redis://localhost:6379/0
CELERY_RESULT_BACKEND=redis://localhost:6379/1
配置config.yaml
文件:
project:
name: "Simba"
version: "1.0.0"
api_version: "/api/v1"
paths:
base_dir: null
faiss_index_dir: "vector_stores/faiss_index"
vector_store_dir: "vector_stores"
llm:
provider: "openai"
model_name: "gpt-4o-mini"
temperature: 0.0
max_tokens: null
streaming: true
additional_params: {}
embedding:
provider: "huggingface"
model_name: "BAAI/bge-base-en-v1.5"
device: "cpu"
additional_params: {}
vector_store:
provider: "faiss"
collection_name: "simba_collection"
additional_params: {}
chunking:
chunk_size: 512
chunk_overlap: 200
retrieval:
method: "hybrid"
k: 5
params:
score_threshold: 0.5
prioritize_semantic: true
weights: [0.7, 0.3]
reranker_model: "colbert"
reranker_threshold: 0.7
database:
provider: "litedb"
additional_params: {}
celery:
broker_url: "${CELERY_BROKER_URL:-redis://redis:6379/0}"
result_backend: "${CELERY_RESULT_BACKEND:-redis://redis:6379/1}"
运行
启动服务器、前端和解析器:
simba server
simba front
simba parsers
3. 应用案例和最佳实践
(此部分将根据实际项目情况提供具体的应用案例和最佳实践。)
4. 典型生态项目
(此部分将介绍与Simba相互协作的典型生态项目,例如其他开源的RAG系统、数据库、云服务等。)
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考