TriCore Tasking 编译器技巧教程

TriCore Tasking 编译器技巧教程

TriCore_Tasking_Compiler_Skills 项目地址: https://gitcode.com/gh_mirrors/tr/TriCore_Tasking_Compiler_Skills

1. 项目介绍

TriCore Tasking 编译器技巧项目(TriCore_Tasking_Compiler_Skills)是一个专注于英飞凌 AURIX 平台上的 Tasking 编译器技巧的开源项目。该项目旨在帮助开发者更好地理解和使用 Tasking 编译器,特别是在 AURIX 单片机上的应用。项目内容包括编译器的基本使用、汇编语言语法、分区、内置函数以及伪指令等。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保你已经安装了以下工具:

  • 英飞凌的 AURIX Development Studio
  • Tasking 编译器

2.2 克隆项目

首先,克隆项目到本地:

git clone https://github.com/GreyZhang/TriCore_Tasking_Compiler_Skills.git

2.3 编译示例代码

进入项目目录并编译示例代码:

cd TriCore_Tasking_Compiler_Skills
tasking_compile.bat

2.4 运行示例

编译完成后,将生成的二进制文件加载到 AURIX 开发板上,并运行程序。

3. 应用案例和最佳实践

3.1 应用案例

  • 案例1: 使用 Tasking 编译器进行 AURIX 平台的实时操作系统(RTOS)开发。
  • 案例2: 通过 Tasking 编译器优化嵌入式系统的功耗管理。

3.2 最佳实践

  • 实践1: 在编写汇编代码时,充分利用 Tasking 编译器的内置函数和伪指令,以提高代码的可读性和效率。
  • 实践2: 定期查阅 Tasking 编译器的手册,了解最新的功能和优化技巧。

4. 典型生态项目

  • 项目1: AURIX Development Studio - 英飞凌官方提供的 AURIX 开发环境,与 Tasking 编译器紧密集成。
  • 项目2: TriCore SDK - 英飞凌的 TriCore SDK,提供了丰富的工具和资源,帮助开发者快速上手 AURIX 平台。

通过本教程,你可以快速掌握 TriCore Tasking 编译器的使用技巧,并在 AURIX 平台上进行高效的嵌入式开发。

TriCore_Tasking_Compiler_Skills 项目地址: https://gitcode.com/gh_mirrors/tr/TriCore_Tasking_Compiler_Skills

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

/**************************************************************************//** * @file core_cm3.c * @brief CMSIS Cortex-M3 Core Peripheral Access Layer Source File * @version V1.30 * @date 30. October 2009 * * @note * Copyright (C) 2009 ARM Limited. All rights reserved. * * @par * ARM Limited (ARM) is supplying this software for use with Cortex-M * processor based microcontrollers. This file can be freely distributed * within development tools that are supporting such ARM based processors. * * @par * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * ******************************************************************************/ #include <stdint.h> /* define compiler specific symbols */ #if defined ( __CC_ARM ) #define __ASM __asm /*!< asm keyword for ARM Compiler */ #define __INLINE __inline /*!< inline keyword for ARM Compiler */ #elif defined ( __ICCARM__ ) #define __ASM __asm /*!< asm keyword for IAR Compiler */ #define __INLINE inline /*!< inline keyword for IAR Compiler. Only avaiable in High optimization mode! */ #elif defined ( __GNUC__ ) #define __ASM __asm /*!< asm keyword for GNU Compiler */ #define __INLINE inline /*!< inline keyword for GNU Compiler */ #elif defined ( __TASKING__ ) #define __ASM __asm /*!< asm keyword for TASKING Compiler */ #define __INLINE inline /*!< inline keyword for TASKING Compiler */ #endif /* ################### Compiler specific Intrinsics ########################### */ #if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/ /* ARM armcc specific functions */ /** * @brief Return the Process Stack Pointer * * @return ProcessStackPointer * * Return the actual process stack pointer */ __ASM uint32_t __get_PSP(void) { mrs r0, psp bx lr } /** * @brief Set the Process Stack Pointer * * @param topOfProcStack Process Stack Pointer * * Assign the value ProcessStackPointer to the MSP * (process stack pointer) Cortex processor register */ __ASM void __set_PSP(uint32_t topOfProcStack) { msr psp, r0 bx lr } /** * @brief Return the Main Stack Pointer * * @return Main Stack Pointer * * Return the current value of the MSP (main stack pointer) * Cortex processor register */ __ASM uint32_t __get_MSP(void) { mrs r0, msp bx lr } /** * @brief Set the Main Stack Pointer * * @param topOfMainStack Main Stack Pointer * * Assign the value mainStackPointer to the MSP * (main stack pointer) Cortex processor register */ __ASM void __set_MSP(uint32_t mainStackPointer) { msr msp, r0 bx lr } /** * @brief Reverse byte order in unsigned short value * * @param value value to reverse * @return reversed value * * Reverse byte order in unsigned short value */ __ASM uint32_t __REV16(uint16_t value) { rev16 r0, r0 bx lr } /** * @brief Reverse byte order in signed short value with sign extension to integer * * @param value value to reverse * @return reversed value * * Reverse byte order in signed short value with sign extension to integer */ __ASM int32_t __REVSH(int16_t value) { revsh r0, r0 bx lr } #if (__ARMCC_VERSION < 400000) /** * @brief Remove the exclusive lock created by ldrex * * Removes the exclusive lock which is created by ldrex. */ __ASM void __CLREX(void) { clrex } /** * @brief Return the Base Priority value * * @return BasePriority * * Return the content of the base priority register */ __ASM uint32_t __get_BASEPRI(void) { mrs r0, basepri bx lr } /** * @brief Set the Base Priority value * * @param basePri BasePriority * * Set the base priority register */ __ASM void __set_BASEPRI(uint32_t basePri) { msr basepri, r0 bx lr } /** * @brief Return the Priority Mask value * * @return PriMask * * Return state of the priority mask bit from the priority mask register */ __ASM uint32_t __get_PRIMASK(void) { mrs r0, primask bx lr } /** * @brief Set the Priority Mask value * * @param priMask PriMask * * Set the priority mask bit in the priority mask register */ __ASM void __set_PRIMASK(uint32_t priMask) { msr primask, r0 bx lr } /** * @brief Return the Fault Mask value * * @return FaultMask * * Return the content of the fault mask register */ __ASM uint32_t __get_FAULTMASK(void) { mrs r0, faultmask bx lr } /** * @brief Set the Fault Mask value * * @param faultMask faultMask value * * Set the fault mask register */ __ASM void __set_FAULTMASK(uint32_t faultMask) { msr faultmask, r0 bx lr } /** * @brief Return the Control Register value * * @return Control value * * Return the content of the control register */ __ASM uint32_t __get_CONTROL(void) { mrs r0, control bx lr } /** * @brief Set the Control Register value * * @param control Control value * * Set the control register */ __ASM void __set_CONTROL(uint32_t control) { msr control, r0 bx lr } #endif /* __ARMCC_VERSION */ #elif (defined (__ICCARM__)) /*------------------ ICC Compiler -------------------*/ /* IAR iccarm specific functions */ #pragma diag_suppress=Pe940 /** * @brief Return the Process Stack Pointer * * @return ProcessStackPointer * * Return the actual process stack pointer */ uint32_t __get_PSP(void) { __ASM("mrs r0, psp"); __ASM("bx lr"); } /** * @brief Set the Process Stack Pointer * * @param topOfProcStack Process Stack Pointer * * Assign the value ProcessStackPointer to the MSP * (process stack pointer) Cortex processor register */ void __set_PSP(uint32_t topOfProcStack) { __ASM("msr psp, r0"); __ASM("bx lr"); } /** * @brief Return the Main Stack Pointer * * @return Main Stack Pointer * * Return the current value of the MSP (main stack pointer) * Cortex processor register */ uint32_t __get_MSP(void) { __ASM("mrs r0, msp"); __ASM("bx lr"); } /** * @brief Set the Main Stack Pointer * * @param topOfMainStack Main Stack Pointer * * Assign the value mainStackPointer to the MSP * (main stack pointer) Cortex processor register */ void __set_MSP(uint32_t topOfMainStack) { __ASM("msr msp, r0"); __ASM("bx lr"); } /** * @brief Reverse byte order in unsigned short value * * @param value value to reverse * @return reversed value * * Reverse byte order in unsigned short value */ uint32_t __REV16(uint16_t value) { __ASM("rev16 r0, r0"); __ASM("bx lr"); } /** * @brief Reverse bit order of value * * @param value value to reverse * @return reversed value * * Reverse bit order of value */ uint32_t __RBIT(uint32_t value) { __ASM("rbit r0, r0"); __ASM("bx lr"); } /** * @brief LDR Exclusive (8 bit) * * @param *addr address pointer * @return value of (*address) * * Exclusive LDR command for 8 bit values) */ uint8_t __LDREXB(uint8_t *addr) { __ASM("ldrexb r0, [r0]"); __ASM("bx lr"); } /** * @brief LDR Exclusive (16 bit) * * @param *addr address pointer * @return value of (*address) * * Exclusive LDR command for 16 bit values */ uint16_t __LDREXH(uint16_t *addr) { __ASM("ldrexh r0, [r0]"); __ASM("bx lr"); } /** * @brief LDR Exclusive (32 bit) * * @param *addr address pointer * @return value of (*address) * * Exclusive LDR command for 32 bit values */ uint32_t __LDREXW(uint32_t *addr) { __ASM("ldrex r0, [r0]"); __ASM("bx lr"); } /** * @brief STR Exclusive (8 bit) * * @param value value to store * @param *addr address pointer * @return successful / failed * * Exclusive STR command for 8 bit values */ uint32_t __STREXB(uint8_t value, uint8_t *addr) { __ASM("strexb r0, r0, [r1]"); __ASM("bx lr"); } /** * @brief STR Exclusive (16 bit) * * @param value value to store * @param *addr address pointer * @return successful / failed * * Exclusive STR command for 16 bit values */ uint32_t __STREXH(uint16_t value, uint16_t *addr) { __ASM("strexh r0, r0, [r1]"); __ASM("bx lr"); } /** * @brief STR Exclusive (32 bit) * * @param value value to store * @param *addr address pointer * @return successful / failed * * Exclusive STR command for 32 bit values */ uint32_t __STREXW(uint32_t value, uint32_t *addr) { __ASM("strex r0, r0, [r1]"); __ASM("bx lr"); } #pragma diag_default=Pe940 #elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/ /* GNU gcc specific functions */ /** * @brief Return the Process Stack Pointer * * @return ProcessStackPointer * * Return the actual process stack pointer */ uint32_t __get_PSP(void) __attribute__( ( naked ) ); uint32_t __get_PSP(void) { uint32_t result=0; __ASM volatile ("MRS %0, psp\n\t" "MOV r0, %0 \n\t" "BX lr \n\t" : "=r" (result) ); return(result); } /** * @brief Set the Process Stack Pointer * * @param topOfProcStack Process Stack Pointer * * Assign the value ProcessStackPointer to the MSP * (process stack pointer) Cortex processor register */ void __set_PSP(uint32_t topOfProcStack) __attribute__( ( naked ) ); void __set_PSP(uint32_t topOfProcStack) { __ASM volatile ("MSR psp, %0\n\t" "BX lr \n\t" : : "r" (topOfProcStack) ); } /** * @brief Return the Main Stack Pointer * * @return Main Stack Pointer * * Return the current value of the MSP (main stack pointer) * Cortex processor register */ uint32_t __get_MSP(void) __attribute__( ( naked ) ); uint32_t __get_MSP(void) { uint32_t result=0; __ASM volatile ("MRS %0, msp\n\t" "MOV r0, %0 \n\t" "BX lr \n\t" : "=r" (result) ); return(result); } /** * @brief Set the Main Stack Pointer * * @param topOfMainStack Main Stack Pointer * * Assign the value mainStackPointer to the MSP * (main stack pointer) Cortex processor register */ void __set_MSP(uint32_t topOfMainStack) __attribute__( ( naked ) ); void __set_MSP(uint32_t topOfMainStack) { __ASM volatile ("MSR msp, %0\n\t" "BX lr \n\t" : : "r" (topOfMainStack) ); } /** * @brief Return the Base Priority value * * @return BasePriority * * Return the content of the base priority register */ uint32_t __get_BASEPRI(void) { uint32_t result=0; __ASM volatile ("MRS %0, basepri_max" : "=r" (result) ); return(result); } /** * @brief Set the Base Priority value * * @param basePri BasePriority * * Set the base priority register */ void __set_BASEPRI(uint32_t value) { __ASM volatile ("MSR basepri, %0" : : "r" (value) ); } /** * @brief Return the Priority Mask value * * @return PriMask * * Return state of the priority mask bit from the priority mask register */ uint32_t __get_PRIMASK(void) { uint32_t result=0; __ASM volatile ("MRS %0, primask" : "=r" (result) ); return(result); } /** * @brief Set the Priority Mask value * * @param priMask PriMask * * Set the priority mask bit in the priority mask register */ void __set_PRIMASK(uint32_t priMask) { __ASM volatile ("MSR primask, %0" : : "r" (priMask) ); } /** * @brief Return the Fault Mask value * * @return FaultMask * * Return the content of the fault mask register */ uint32_t __get_FAULTMASK(void) { uint32_t result=0; __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); return(result); } /** * @brief Set the Fault Mask value * * @param faultMask faultMask value * * Set the fault mask register */ void __set_FAULTMASK(uint32_t faultMask) { __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) ); } /** * @brief Return the Control Register value * * @return Control value * * Return the content of the control register */ uint32_t __get_CONTROL(void) { uint32_t result=0; __ASM volatile ("MRS %0, control" : "=r" (result) ); return(result); } /** * @brief Set the Control Register value * * @param control Control value * * Set the control register */ void __set_CONTROL(uint32_t control) { __ASM volatile ("MSR control, %0" : : "r" (control) ); } /** * @brief Reverse byte order in integer value * * @param value value to reverse * @return reversed value * * Reverse byte order in integer value */ uint32_t __REV(uint32_t value) { uint32_t result=0; __ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) ); return(result); } /** * @brief Reverse byte order in unsigned short value * * @param value value to reverse * @return reversed value * * Reverse byte order in unsigned short value */ uint32_t __REV16(uint16_t value) { uint32_t result=0; __ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) ); return(result); } /** * @brief Reverse byte order in signed short value with sign extension to integer * * @param value value to reverse * @return reversed value * * Reverse byte order in signed short value with sign extension to integer */ int32_t __REVSH(int16_t value) { uint32_t result=0; __ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) ); return(result); } /** * @brief Reverse bit order of value * * @param value value to reverse * @return reversed value * * Reverse bit order of value */ uint32_t __RBIT(uint32_t value) { uint32_t result=0; __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); return(result); } /** * @brief LDR Exclusive (8 bit) * * @param *addr address pointer * @return value of (*address) * * Exclusive LDR command for 8 bit value */ uint8_t __LDREXB(uint8_t *addr) { uint8_t result=0; __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } /** * @brief LDR Exclusive (16 bit) * * @param *addr address pointer * @return value of (*address) * * Exclusive LDR command for 16 bit values */ uint16_t __LDREXH(uint16_t *addr) { uint16_t result=0; __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } /** * @brief LDR Exclusive (32 bit) * * @param *addr address pointer * @return value of (*address) * * Exclusive LDR command for 32 bit values */ uint32_t __LDREXW(uint32_t *addr) { uint32_t result=0; __ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } /** * @brief STR Exclusive (8 bit) * * @param value value to store * @param *addr address pointer * @return successful / failed * * Exclusive STR command for 8 bit values */ uint32_t __STREXB(uint8_t value, uint8_t *addr) { uint32_t result=0; __ASM volatile ("strexb %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } /** * @brief STR Exclusive (16 bit) * * @param value value to store * @param *addr address pointer * @return successful / failed * * Exclusive STR command for 16 bit values */ uint32_t __STREXH(uint16_t value, uint16_t *addr) { uint32_t result=0; __ASM volatile ("strexh %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } /** * @brief STR Exclusive (32 bit) * * @param value value to store * @param *addr address pointer * @return successful / failed * * Exclusive STR command for 32 bit values */ uint32_t __STREXW(uint32_t value, uint32_t *addr) { uint32_t result=0; __ASM volatile ("strex %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } #elif (defined (__TASKING__)) /*------------------ TASKING Compiler ---------------------*/ /* TASKING carm specific functions */ /* * The CMSIS functions have been implemented as intrinsics in the compiler. * Please use "carm -?i" to get an up to date list of all instrinsics, * Including the CMSIS ones. */ #endif 去掉注解,只做简单的中文注解
最新发布
05-24
以下是去掉英文注解后的代码,并保留简单的中文注解: ```c #include <stdint.h> /* 定义编译器特定的符号 */ #if defined ( __CC_ARM ) #define __ASM __asm #define __INLINE __inline #elif defined ( __ICCARM__ ) #define __ASM __asm #define __INLINE inline #elif defined ( __GNUC__ ) #define __ASM __asm #define __INLINE inline #elif defined ( __TASKING__ ) #define __ASM __asm #define __INLINE inline #endif /* ################### 编译器特定的内联函数 ########################### */ #if defined ( __CC_ARM ) __ASM uint32_t __get_PSP(void) { mrs r0, psp bx lr } __ASM void __set_PSP(uint32_t topOfProcStack) { msr psp, r0 bx lr } __ASM uint32_t __get_MSP(void) { mrs r0, msp bx lr } __ASM void __set_MSP(uint32_t mainStackPointer) { msr msp, r0 bx lr } __ASM uint32_t __REV16(uint16_t value) { rev16 r0, r0 bx lr } __ASM int32_t __REVSH(int16_t value) { revsh r0, r0 bx lr } #if (__ARMCC_VERSION < 400000) __ASM void __CLREX(void) { clrex } __ASM uint32_t __get_BASEPRI(void) { mrs r0, basepri bx lr } __ASM void __set_BASEPRI(uint32_t basePri) { msr basepri, r0 bx lr } __ASM uint32_t __get_PRIMASK(void) { mrs r0, primask bx lr } __ASM void __set_PRIMASK(uint32_t priMask) { msr primask, r0 bx lr } __ASM uint32_t __get_FAULTMASK(void) { mrs r0, faultmask bx lr } __ASM void __set_FAULTMASK(uint32_t faultMask) { msr faultmask, r0 bx lr } __ASM uint32_t __get_CONTROL(void) { mrs r0, control bx lr } __ASM void __set_CONTROL(uint32_t control) { msr control, r0 bx lr } #endif /* __ARMCC_VERSION */ #elif (defined (__ICCARM__)) uint32_t __get_PSP(void) { __ASM("mrs r0, psp"); __ASM("bx lr"); } void __set_PSP(uint32_t topOfProcStack) { __ASM("msr psp, r0"); __ASM("bx lr"); } uint32_t __get_MSP(void) { __ASM("mrs r0, msp"); __ASM("bx lr"); } void __set_MSP(uint32_t topOfMainStack) { __ASM("msr msp, r0"); __ASM("bx lr"); } uint32_t __REV16(uint16_t value) { __ASM("rev16 r0, r0"); __ASM("bx lr"); } uint32_t __RBIT(uint32_t value) { __ASM("rbit r0, r0"); __ASM("bx lr"); } uint8_t __LDREXB(uint8_t *addr) { __ASM("ldrexb r0, [r0]"); __ASM("bx lr"); } uint16_t __LDREXH(uint16_t *addr) { __ASM("ldrexh r0, [r0]"); __ASM("bx lr"); } uint32_t __LDREXW(uint32_t *addr) { __ASM("ldrex r0, [r0]"); __ASM("bx lr"); } uint32_t __STREXB(uint8_t value, uint8_t *addr) { __ASM("strexb r0, r0, [r1]"); __ASM("bx lr"); } uint32_t __STREXH(uint16_t value, uint16_t *addr) { __ASM("strexh r0, r0, [r1]"); __ASM("bx lr"); } uint32_t __STREXW(uint32_t value, uint32_t *addr) { __ASM("strex r0, r0, [r1]"); __ASM("bx lr"); } #elif (defined (__GNUC__)) uint32_t __get_PSP(void) __attribute__( ( naked ) ); uint32_t __get_PSP(void) { uint32_t result=0; __ASM volatile ("MRS %0, psp\n\t" "MOV r0, %0 \n\t" "BX lr \n\t" : "=r" (result) ); return(result); } void __set_PSP(uint32_t topOfProcStack) __attribute__( ( naked ) ); void __set_PSP(uint32_t topOfProcStack) { __ASM volatile ("MSR psp, %0\n\t" "BX lr \n\t" : : "r" (topOfProcStack) ); } uint32_t __get_MSP(void) __attribute__( ( naked ) ); uint32_t __get_MSP(void) { uint32_t result=0; __ASM volatile ("MRS %0, msp\n\t" "MOV r0, %0 \n\t" "BX lr \n\t" : "=r" (result) ); return(result); } void __set_MSP(uint32_t topOfMainStack) __attribute__( ( naked ) ); void __set_MSP(uint32_t topOfMainStack) { __ASM volatile ("MSR msp, %0\n\t" "BX lr \n\t" : : "r" (topOfMainStack) ); } uint32_t __get_BASEPRI(void) { uint32_t result=0; __ASM volatile ("MRS %0, basepri_max" : "=r" (result) ); return(result); } void __set_BASEPRI(uint32_t value) { __ASM volatile ("MSR basepri, %0" : : "r" (value) ); } uint32_t __get_PRIMASK(void) { uint32_t result=0; __ASM volatile ("MRS %0, primask" : "=r" (result) ); return(result); } void __set_PRIMASK(uint32_t priMask) { __ASM volatile ("MSR primask, %0" : : "r" (priMask) ); } uint32_t __get_FAULTMASK(void) { uint32_t result=0; __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); return(result); } void __set_FAULTMASK(uint32_t faultMask) { __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) ); } uint32_t __get_CONTROL(void) { uint32_t result=0; __ASM volatile ("MRS %0, control" : "=r" (result) ); return(result); } void __set_CONTROL(uint32_t control) { __ASM volatile ("MSR control, %0" : : "r" (control) ); } uint32_t __REV(uint32_t value) { uint32_t result=0; __ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) ); return(result); } uint32_t __REV16(uint16_t value) { uint32_t result=0; __ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) ); return(result); } int32_t __REVSH(int16_t value) { uint32_t result=0; __ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) ); return(result); } uint32_t __RBIT(uint32_t value) { uint32_t result=0; __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); return(result); } uint8_t __LDREXB(uint8_t *addr) { uint8_t result=0; __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } uint16_t __LDREXH(uint16_t *addr) { uint16_t result=0; __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } uint32_t __LDREXW(uint32_t *addr) { uint32_t result=0; __ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } uint32_t __STREXB(uint8_t value, uint8_t *addr) { uint32_t result=0; __ASM volatile ("strexb %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } uint32_t __STREXH(uint16_t value, uint16_t *addr) { uint32_t result=0; __ASM volatile ("strexh %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } uint32_t __STREXW(uint32_t value, uint32_t *addr) { uint32_t result=0; __ASM volatile ("strex %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } #elif (defined (__TASKING__)) #endif ``` ### 解释: 上述代码为不同编译器提供了对Cortex-M3内核寄存器的操作函数。这些函数主要用于访问和修改栈指针(PSP、MSP)、优先级掩码、故障掩码以及控制寄存器等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟洁祺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值