机器学习手记-入门级概念

本文介绍了机器学习的基本概念,包括其发展动力、模式以及典型应用。机器学习能从历史数据中找规律,用于未来决策,减少对数据分析师的依赖。主要应用包括关联规则分析、聚类、朴素贝叶斯分类、决策树、CTR预估和协同过滤。此外,还探讨了机器学习的离线和在线学习模式,以及有监督、无监督和强化学习等算法分类。

什么是机器学习

利用计算机从历史数据中找出规律,并把这些规律用到未来不确定场景的决策

  • 传统的数据分析行业依赖于数据分析师本身的经验和知识水平,通过机器学习则可以摆脱对数据分析师的依赖,由机器代替人工进行分析。

机器学习发展的原动力

  • 从历史数据中找到规律,把这些规律用到未来,自动做出决定
  • 用数据代替专家
  • 经济驱动,数据变现

机器学习的模式

  • 离线机器学习

    利用历史数据建立模型。例如每天夜里利用昨天的销售数据建立模型给明天使用。

  • 在线机器学习

    利用实时数据,快速建立模型并应用。例如电商实时推荐系统。

机器学习的典型应用

关联规则

购物篮分析,把常常一起出现在消费者购买清单上的物品作关联分析,发现购买规律。进而调整销售规则,比如捆绑销售。

聚类规则

将用户细分,进而达到精准营销

朴素贝叶斯

过滤垃圾邮件

决策树

信用卡欺诈

CTR预估

互联网广告

协同过滤

推荐系统

常用算法和分类

算法分类(1)

  • 有监督学习

训练数据已经被提前打好标签,典型的如分类算法和回归算法

  • 无监督学习

由算法自己完成数据聚类,典型算法如聚类算法

  • 半监督学习

强化学习,如同小孩子学走路,练的越多走得越稳

算法分类2

  • 分类与回归
  • 聚类
  • 标注

算法分类3

  • 生成模型

    根据概率判断,例如该样本60%可能性是A类,比较模棱两可。

  • 判别模型

    非1即2,例如该样本是A类,比较武断。

数据分析和机器学习

-数据分析机器学习
数据特点交易数据行为数据
数据量级少量海量
分析方式采样分析全量分析
解决问题报告过去的事情预测未来的事情
分析方法用户驱动,交互式分析数据驱动,自动进行知识发现
参与者分析师数据+算法
结果分析师能力决定结果数据质量决定结果
目标用户公司高层个体

机器学习解决问题的关键

训练模型

  • 定义模型

  • 定义损失函数

  • 优化算法
    这里写图片描述

模型评估

  • 交叉验证
  • 效果评估
    这里写图片描述
源码来自:https://pan.quark.cn/s/a3a3fbe70177 AppBrowser(Application属性查看器,不需要越狱! ! ! ) 不需要越狱,调用私有方法 --- 获取完整的已安装应用列表、打开和删除应用操作、应用运行时相关信息的查看。 支持iOS10.X 注意 目前AppBrowser不支持iOS11应用查看, 由于iOS11目前还处在Beta版, 系统API还没有稳定下来。 等到Private Header更新了iOS11版本,我也会进行更新。 功能 [x] 已安装的应用列表 [x] 应用的详情界面 (打开应用,删除应用,应用的相关信息展示) [x] 应用运行时信息展示(LSApplicationProxy) [ ] 定制喜欢的字段,展示在应用详情界面 介绍 所有已安装应用列表(应用icon+应用名) 为了提供思路,这里只用伪代码,具体的私有代码调用请查看: 获取应用实例: 获取应用名和应用的icon: 应用列表界面展示: 应用列表 应用运行时详情 打开应用: 卸载应用: 获取info.plist文件: 应用运行时详情界面展示: 应用运行时详情 右上角,从左往右第一个按钮用来打开应用;第二个按钮用来卸载这个应用 INFO按钮用来解析并显示出对应的LSApplicationProxy类 树形展示LSApplicationProxy类 通过算法,将LSApplicationProxy类,转换成了字典。 转换规则是:属性名为key,属性值为value,如果value是一个可解析的类(除了NSString,NSNumber...等等)或者是个数组或字典,则继续递归解析。 并且会找到superClass的属性并解析,superClass如...
基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO)的LSTM分类预测研究(Matlab代码实现)内容概要:本文研究了一种基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO),并将其应用于LSTM神经网络的分类预测中,通过Matlab代码实现。该方法结合遗传算法的全局搜索能力与改进的多群粒子群算法的局部优化特性,提升LSTM模型在分类任务中的性能表现,尤其适用于复杂非线性系统的预测问题。文中详细阐述了算法的设计思路、优化机制及在LSTM参数优化中的具体应用,并提供了可复现的Matlab代码,属于SCI级别研究成果的复现与拓展。; 适合人群:具备一定机器学习和优化算法基础,熟悉Matlab编程,从事智能算法、时间序列预测或分类模型研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①提升LSTM在分类任务中的准确性与收敛速度;②研究混合智能优化算法(如GA与PSO结合)在神经网络超参数优化中的应用;③实现高精度分类预测模型,适用于电力系统故障诊断、电池健康状态识别等领域; 阅读建议:建议读者结合Matlab代码逐步调试运行,理解GA-HIDMSPSO算法的实现细节,重点关注种群划分、异构策略设计及与LSTM的集成方式,同时可扩展至其他深度学习模型的参数优化任务中进行对比实验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值