机器学习手记-入门级概念

本文介绍了机器学习的基本概念,包括其发展动力、模式以及典型应用。机器学习能从历史数据中找规律,用于未来决策,减少对数据分析师的依赖。主要应用包括关联规则分析、聚类、朴素贝叶斯分类、决策树、CTR预估和协同过滤。此外,还探讨了机器学习的离线和在线学习模式,以及有监督、无监督和强化学习等算法分类。

什么是机器学习

利用计算机从历史数据中找出规律,并把这些规律用到未来不确定场景的决策

  • 传统的数据分析行业依赖于数据分析师本身的经验和知识水平,通过机器学习则可以摆脱对数据分析师的依赖,由机器代替人工进行分析。

机器学习发展的原动力

  • 从历史数据中找到规律,把这些规律用到未来,自动做出决定
  • 用数据代替专家
  • 经济驱动,数据变现

机器学习的模式

  • 离线机器学习

    利用历史数据建立模型。例如每天夜里利用昨天的销售数据建立模型给明天使用。

  • 在线机器学习

    利用实时数据,快速建立模型并应用。例如电商实时推荐系统。

机器学习的典型应用

关联规则

购物篮分析,把常常一起出现在消费者购买清单上的物品作关联分析,发现购买规律。进而调整销售规则,比如捆绑销售。

聚类规则

将用户细分,进而达到精准营销

朴素贝叶斯

过滤垃圾邮件

决策树

信用卡欺诈

CTR预估

互联网广告

协同过滤

推荐系统

常用算法和分类

算法分类(1)

  • 有监督学习

训练数据已经被提前打好标签,典型的如分类算法和回归算法

  • 无监督学习

由算法自己完成数据聚类,典型算法如聚类算法

  • 半监督学习

强化学习,如同小孩子学走路,练的越多走得越稳

算法分类2

  • 分类与回归
  • 聚类
  • 标注

算法分类3

  • 生成模型

    根据概率判断,例如该样本60%可能性是A类,比较模棱两可。

  • 判别模型

    非1即2,例如该样本是A类,比较武断。

数据分析和机器学习

-数据分析机器学习
数据特点交易数据行为数据
数据量级少量海量
分析方式采样分析全量分析
解决问题报告过去的事情预测未来的事情
分析方法用户驱动,交互式分析数据驱动,自动进行知识发现
参与者分析师数据+算法
结果分析师能力决定结果数据质量决定结果
目标用户公司高层个体

机器学习解决问题的关键

训练模型

  • 定义模型

  • 定义损失函数

  • 优化算法
    这里写图片描述

模型评估

  • 交叉验证
  • 效果评估
    这里写图片描述
内容概要:本文详细介绍了一个基于C++的养老院管理系统的设计与实现,旨在应对人口老龄化带来的管理挑战。系统通过整合住户档案、健康监测、护理计划、任务调度等核心功能,构建了从数据采集、清洗、AI风险预测到服务调度与可视化的完整技术架构。采用C++高性能服务端结合消息队列、规则引擎和机器学习模型,实现了健康状态实时监控、智能任务分配、异常告警推送等功能,并解决了多源数据整合、权限安全、老旧硬件兼容等实际问题。系统支持模块化扩展与流程自定义,提升了养老服务效率、医护协同水平和住户安全保障,同时为运营决策提供数据支持。文中还提供了关键模块的代码示例,如健康指数算法、任务调度器和日志记录组件。; 适合人群:具备C++编程基础,从事软件开发或系统设计工作1-3年的研发人员,尤其是关注智慧养老、医疗信息系统开发的技术人员。; 使用场景及目标:①学习如何在真实项目中应用C++构建高性能、可扩展的管理系统;②掌握多源数据整合、实时健康监控、任务调度与权限控制等复杂业务的技术实现方案;③了解AI模型在养老场景中的落地方式及系统架构设计思路。; 阅读建议:此资源不仅包含系统架构与模型描述,还附有核心代码片段,建议结合整体设计逻辑深入理解各模块之间的协同机制,并可通过重构或扩展代码来加深对系统工程实践的掌握。
内容概要:本文详细介绍了一个基于C++的城市交通流量数据可视化分析系统的设计与实现。系统涵盖数据采集与预处理、存储与管理、分析建模、可视化展示、系统集成扩展以及数据安全与隐私保护六大核心模块。通过多源异构数据融合、高效存储检索、实时处理分析、高交互性可视化界面及模块化架构设计,实现了对城市交通流量的实时监控、历史趋势分析与智能决策支持。文中还提供了关键模块的C++代码示例,如数据采集、清洗、CSV读写、流量统计、异常检测及基于SFML的柱状图绘制,增强了系统的可实现性与实用性。; 适合人群:具备C++编程基础,熟悉数据结构与算法,有一定项目开发经验的高校学生、研究人员及从事智能交通系统开发的工程师;适合对大数据处理、可视化技术和智慧城市应用感兴趣的技术人员。; 使用场景及目标:①应用于城市交通管理部门,实现交通流量实时监测与拥堵预警;②为市民出行提供路径优化建议;③支持交通政策制定与信号灯配时优化;④作为智慧城市建设中的智能交通子系统,实现与其他城市系统的数据协同。; 阅读建议:建议结合文中代码示例搭建开发环境进行实践,重点关注多线程数据采集、异常检测算法与可视化实现细节;可进一步扩展机器学习模型用于流量预测,并集成真实交通数据源进行系统验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值