机器学习手记-入门级概念

本文介绍了机器学习的基本概念,包括其发展动力、模式以及典型应用。机器学习能从历史数据中找规律,用于未来决策,减少对数据分析师的依赖。主要应用包括关联规则分析、聚类、朴素贝叶斯分类、决策树、CTR预估和协同过滤。此外,还探讨了机器学习的离线和在线学习模式,以及有监督、无监督和强化学习等算法分类。

什么是机器学习

利用计算机从历史数据中找出规律,并把这些规律用到未来不确定场景的决策

  • 传统的数据分析行业依赖于数据分析师本身的经验和知识水平,通过机器学习则可以摆脱对数据分析师的依赖,由机器代替人工进行分析。

机器学习发展的原动力

  • 从历史数据中找到规律,把这些规律用到未来,自动做出决定
  • 用数据代替专家
  • 经济驱动,数据变现

机器学习的模式

  • 离线机器学习

    利用历史数据建立模型。例如每天夜里利用昨天的销售数据建立模型给明天使用。

  • 在线机器学习

    利用实时数据,快速建立模型并应用。例如电商实时推荐系统。

机器学习的典型应用

关联规则

购物篮分析,把常常一起出现在消费者购买清单上的物品作关联分析,发现购买规律。进而调整销售规则,比如捆绑销售。

聚类规则

将用户细分,进而达到精准营销

朴素贝叶斯

过滤垃圾邮件

决策树

信用卡欺诈

CTR预估

互联网广告

协同过滤

推荐系统

常用算法和分类

算法分类(1)

  • 有监督学习

训练数据已经被提前打好标签,典型的如分类算法和回归算法

  • 无监督学习

由算法自己完成数据聚类,典型算法如聚类算法

  • 半监督学习

强化学习,如同小孩子学走路,练的越多走得越稳

算法分类2

  • 分类与回归
  • 聚类
  • 标注

算法分类3

  • 生成模型

    根据概率判断,例如该样本60%可能性是A类,比较模棱两可。

  • 判别模型

    非1即2,例如该样本是A类,比较武断。

数据分析和机器学习

-数据分析机器学习
数据特点交易数据行为数据
数据量级少量海量
分析方式采样分析全量分析
解决问题报告过去的事情预测未来的事情
分析方法用户驱动,交互式分析数据驱动,自动进行知识发现
参与者分析师数据+算法
结果分析师能力决定结果数据质量决定结果
目标用户公司高层个体

机器学习解决问题的关键

训练模型

  • 定义模型

  • 定义损失函数

  • 优化算法
    这里写图片描述

模型评估

  • 交叉验证
  • 效果评估
    这里写图片描述
**高校专业实习管理平台设计与实现** 本设计项目旨在构建一个服务于高等院校专业实习环节的综合性管理平台。该系统采用当前主流的Web开发架构,基于Python编程语言,结合Django后端框架与Vue.js前端框架进行开发,实现了前后端逻辑的分离。数据存储层选用广泛应用的MySQL关系型数据库,确保了系统的稳定性和数据处理的效率。 平台设计了多角色协同工作的管理模型,具体包括系统管理员、院系负责人、指导教师、实习单位对接人以及参与实习的学生。各角色依据权限访问不同的功能模块,共同构成完整的实习管理流程。核心功能模块涵盖:基础信息管理(如院系、专业、人员信息)、实习过程管理(包括实习公告发布、实习内容规划、实习申请与安排)、双向反馈机制(单位评价与学生反馈)、实习支持与保障、以及贯穿始终的成绩评定与综合成绩管理。 在技术实现层面,后端服务依托Django框架的高效与安全性构建业务逻辑;前端界面则利用Vue.js的组件化特性与LayUI的样式库,致力于提供清晰、友好的用户交互体验。数据库设计充分考虑了实习管理业务的实体关系与数据一致性要求,并保留了未来功能扩展的灵活性。 整个系统遵循规范的软件开发流程,从需求分析、系统设计、编码实现到测试验证,均进行了多轮迭代与优化,力求在功能完备性、系统性能及用户使用体验方面达到较高标准。 **核心术语**:实习管理平台;Django框架;MySQL数据库;Vue.js前端;Python语言。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值