分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.youkuaiyun.com/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
C++11 并发指南一(C++11 多线程初探)
引言
C++11 自2011年发布以来已经快两年了,之前一直没怎么关注,直到最近几个月才看了一些 C++11 的新特性,今后几篇博客我都会写一些关于 C++11 的特性,算是记录一下自己学到的东西吧,和大家共勉。
相信 Linux 程序员都用过 Pthread, 但有了 C++11 的 std::thread 以后,你可以在语言层面编写多线程程序了,直接的好处就是多线程程序的可移植性得到了很大的提高,所以作为一名 C++ 程序员,熟悉 C++11 的多线程编程方式还是很有益处的。
如果你对 C++11 不太熟悉,建议先看看维基百科上关于 C++11 新特性的介绍,中文C++11介绍,英文C++11介绍 ,另外C++之父 Bjarne Stroustrup 的关于 C++11 的 FAQ 也是必看的,我也收集了一些关于C++11的资料,供大家查阅:
资料汇
http://www.open-std.org/jtc1/sc22/wg21/
C++0x/C++11 Support in GCC:http://gcc.gnu.org/projects/cxx0x.html
What is C++0x:https://www2.research.att.com/~bs/what-is-2009.pdf
Overview of the New C++:http://www.artima.com/shop/overview_of_the_new_cpp
Overview of the New C++ (C++0x).pdf:http://ishare.iask.sina.com.cn/f/20120005.html?from=like
A Brief Look at C++0x:http://www.artima.com/cppsource/cpp0x.html
Summary of C++11 Feature Availability in gcc and MSVC:http://www.aristeia.com/C++11/C++11FeatureAvailability.htm
C++ 11: Come Closer:http://www.codeproject.com/Articles/344282/Cplusplus-11-Come-Closer
C++11 threads, locks and condition variables: http://www.codeproject.com/Articles/598695/Cplusplus11-threads-locks-and-condition-variables
Move Semantics and Perfect Forwarding in C++11:http://www.codeproject.com/Articles/397492/Move-Semantics-and-Perfect-Forwarding-in-Cplusplus
http://solarianprogrammer.com/categories/C++11/
C++11 Concurrency:http://www.baptiste-wicht.com/2012/03/cpp11-concurrency-part1-start-threads/
http://www.hpl.hp.com/personal/Hans_Boehm/misc_slides/sfacm-cleaned.pdf
http://en.cppreference.com/w/cpp/thread
http://isocpp.org/blog/2012/12/c11-a-cheat-sheet-alex-sinyakov
The Biggest Changes in C++11:http://blog.smartbear.com/c-plus-plus/the-biggest-changes-in-c11-and-why-you-should-care/
Ten C++11 Features Every C++ Developer Should Use:http://www.codeproject.com/Articles/570638/Ten-Cplusplus11-Features-Every-Cplusplus-Developer
C++11 – A Glance [part 1 of n]:http://www.codeproject.com/Articles/312029/Cplusplus11-A-Glance-part-1-of-n
C++11 – A Glance [part 2 of n]:http://www.codeproject.com/Articles/314415/Cplusplus11-A-Glance-part-2-of-n
C++11(及现代C++风格)和快速迭代式开发:http://mindhacks.cn/2012/08/27/modern-cpp-practices/
Lambda Functions in C++11 - the Definitive Guide:http://www.cprogramming.com/c++11/c++11-lambda-closures.html
Better types in C++11 - nullptr, enum classes (strongly typed enumerations) and cstdint:http://www.cprogramming.com/c++11/c++11-nullptr-strongly-typed-enum-class.html
Rvalue-references-and-move-semantics-in-c++11:http://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
http://www.gotw.ca/publications/index.htm
http://www.devx.com/SpecialReports/Door/38865
Multi-threading in C++0x:http://accu.org/index.php/journals/1584
C++ 0X feature summary cheat sheat:http://www.iesensor.com/blog/2011/05/31/c-0x-feature-summary-cheat-sheat/
Multithreading in C++0x part 1: Starting Threads:http://www.justsoftwaresolutions.co.uk/threading/multithreading-in-c++0x-part-1-starting-threads.html
http://en.cppreference.com/w/cpp/thread
http://www.cplusplus.com/reference/multithreading/
好了,下面来说正题吧 ;-)
与 C++11 多线程相关的头文件
C++11 新标准中引入了四个头文件来支持多线程编程,他们分别是<atomic> ,<thread>,<mutex>,<condition_variable>和<future>。
- <atomic>:该头文主要声明了两个类, std::atomic 和 std::atomic_flag,另外还声明了一套 C 风格的原子类型和与 C 兼容的原子操作的函数。
- <thread>:该头文件主要声明了 std::thread 类,另外 std::this_thread 命名空间也在该头文件中。
- <mutex>:该头文件主要声明了与互斥量(mutex)相关的类,包括 std::mutex 系列类,std::lock_guard, std::unique_lock, 以及其他的类型和函数。
- <condition_variable>:该头文件主要声明了与条件变量相关的类,包括 std::condition_variable 和 std::condition_variable_any。
- <future>:该头文件主要声明了 std::promise, std::package_task 两个 Provider 类,以及 std::future 和 std::shared_future 两个 Future 类,另外还有一些与之相关的类型和函数,std::async() 函数就声明在此头文件中。
std::thread "Hello world"
下面是一个最简单的使用 std::thread 类的例子:
#include <stdio.h>#include <stdlib.h>#include <iostream> // std::cout#include <thread> // std::threadvoid thread_task() { std::cout << "hello thread" << std::endl;}/* * === FUNCTION ========================================================= * Name: main * Description: program entry routine. * ======================================================================== */int main(int argc, const char *argv[]){ std::thread t(thread_task); t.join(); return EXIT_SUCCESS;} /* ---------- end of function main ---------- */
Makefile 如下:
all:ThreadCC=g++CPPFLAGS=-Wall -std=c++11 -ggdbLDFLAGS=-pthreadThread:Thread.o $(CC) $(LDFLAGS) -o $@ $^Thread.o:Thread.cc $(CC) $(CPPFLAGS) -o $@ -c $^.PHONY: cleanclean: rm Thread.o Thread
注意在 Linux GCC4.6 环境下,编译时需要加 -pthread,否则执行时会出现:
$ ./Threadterminate called after throwing an instance of 'std::system_error' what(): Operation not permittedAborted (core dumped)
原因是 GCC 默认没有加载 pthread 库,据说在后续的版本中可以不用在编译时添加 -pthread 选项。
更多的有关 C++11 Concurrency 的介绍将在后续的一系列博客中写出,希望自己勤快一点吧 ;-)
C++11 并发指南二(std::thread 详解)
上一篇博客《C++11 并发指南一(C++11 多线程初探)》中只是提到了 std::thread 的基本用法,并给出了一个最简单的例子,本文将稍微详细地介绍 std::thread 的用法。
std::thread 在 <thread> 头文件中声明,因此使用 std::thread 时需要包含 <thread> 头文件。
std::thread 构造
default (1) | thread() noexcept; |
---|---|
initialization (2) | template <class Fn, class... Args>explicit thread (Fn&& fn, Args&&... args); |
copy [deleted] (3) | thread (const thread&) = delete; |
move (4) | thread (thread&& x) noexcept; |
- (1). 默认构造函数,创建一个空的 thread 执行对象。
- (2). 初始化构造函数,创建一个 thread对象,该 thread对象可被 joinable,新产生的线程会调用 fn 函数,该函数的参数由 args 给出。
- (3). 拷贝构造函数(被禁用),意味着 thread 不可被拷贝构造。
- (4). move 构造函数,move 构造函数,调用成功之后 x 不代表任何 thread 执行对象。
- 注意:可被 joinable 的 thread 对象必须在他们销毁之前被主线程 join 或者将其设置为 detached.
std::thread 各种构造函数例子如下(参考):
#include <iostream>#include <utility>#include <thread>#include <chrono>#include <functional>#include <atomic> void f1(int n){ for (int i = 0; i < 5; ++i) { std::cout << "Thread " << n << " executing\n"; std::this_thread::sleep_for(std::chrono::milliseconds(10)); }} void f2(int& n){ for (int i = 0; i < 5; ++i) { std::cout << "Thread 2 executing\n"; ++n; std::this_thread::sleep_for(std::chrono::milliseconds(10)); }} int main(){ int n = 0; std::thread t1; // t1 is not a thread std::thread t2(f1, n + 1); // pass by value std::thread t3(f2, std::ref(n)); // pass by reference std::thread t4(std::move(t3)); // t4 is now running f2(). t3 is no longer a thread t2.join(); t4.join(); std::cout << "Final value of n is " << n << '\n';}
move 赋值操作
move (1) | thread& operator= (thread&& rhs) noexcept; |
---|---|
copy [deleted] (2) | thread& operator= (const thread&) = delete; |
- (1). move 赋值操作,如果当前对象不可 joinable,需要传递一个右值引用(rhs)给 move 赋值操作;如果当前对象可被 joinable,则 terminate() 报错。
- (2). 拷贝赋值操作被禁用,thread 对象不可被拷贝。
请看下面的例子:
#include <stdio.h>#include <stdlib.h>#include <chrono> // std::chrono::seconds#include <iostream> // std::cout#include <thread> // std::thread, std::this_thread::sleep_forvoid thread_task(int n) { std::this_thread::sleep_for(std::chrono::seconds(n)); std::cout << "hello thread " << std::this_thread::get_id() << " paused " << n << " seconds" << std::endl;}/* * === FUNCTION ========================================================= * Name: main * Description: program entry routine. * ======================================================================== */int main(int argc, const char *argv[]){ std::thread threads[5]; std::cout << "Spawning 5 threads...\n"; for (int i = 0; i < 5; i++) { threads[i] = std::thread(thread_task, i + 1); } std::cout << "Done spawning threads! Now wait for them to join\n"; for (auto& t: threads) { t.join(); } std::cout << "All threads joined.\n"; return EXIT_SUCCESS;} /* ---------- end of function main ---------- */
其他成员函数
- 获取线程 ID。
- 检查线程是否可被 join。
-
Join 线程。
-
Detach 线程
-
Swap 线程 。
-
返回 native handle。
- 检测硬件并发特性。
C++11 并发指南三(std::mutex 详解)
上一篇《C++11 并发指南二(std::thread 详解)》中主要讲到了 std::thread 的一些用法,并给出了两个小例子,本文将介绍 std::mutex 的用法。
Mutex 又称互斥量,C++ 11中与 Mutex 相关的类(包括锁类型)和函数都声明在 <mutex> 头文件中,所以如果你需要使用 std::mutex,就必须包含 <mutex> 头文件。
<mutex> 头文件介绍
Mutex 系列类(四种)
- std::mutex,最基本的 Mutex 类。
- std::recursive_mutex,递归 Mutex 类。
- std::time_mutex,定时 Mutex 类。
- std::recursive_timed_mutex,定时递归 Mutex 类。
Lock 类(两种)
- std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
- std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。
其他类型
- std::once_flag
- std::adopt_lock_t
- std::defer_lock_t
- std::try_to_lock_t
函数
- std::try_lock,尝试同时对多个互斥量上锁。
- std::lock,可以同时对多个互斥量上锁。
- std::call_once,如果多个线程需要同时调用某个函数,call_once 可以保证多个线程对该函数只调用一次。
std::mutex 介绍
下面以 std::mutex 为例介绍 C++11 中的互斥量用法。
std::mutex 是C++11 中最基本的互斥量,std::mutex 对象提供了独占所有权的特性——即不支持递归地对 std::mutex 对象上锁,而 std::recursive_lock 则可以递归地对互斥量对象上锁。
std::mutex 的成员函数
- 构造函数,std::mutex不允许拷贝构造,也不允许 move 拷贝,最初产生的 mutex 对象是处于 unlocked 状态的。
- lock(),调用线程将锁住该互斥量。线程调用该函数会发生下面 3 种情况:(1). 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁。(2). 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住。(3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。
- unlock(), 解锁,释放对互斥量的所有权。
- try_lock(),尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞。线程调用该函数也会出现下面 3 种情况,(1). 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量。(2). 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉。(3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。
下面给出一个与 std::mutex 的小例子(参考)
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutexvolatile int counter(0); // non-atomic counterstd::mutex mtx; // locks access to countervoid attempt_10k_increases() { for (int i=0; i<10000; ++i) { if (mtx.try_lock()) { // only increase if currently not locked: ++counter; mtx.unlock(); } }}int main (int argc, const char* argv[]) { std::thread threads[10]; for (int i=0; i<10; ++i) threads[i] = std::thread(attempt_10k_increases); for (auto& th : threads) th.join(); std::cout << counter << " successful increases of the counter.\n"; return 0;}
std::recursive_mutex 介绍
std::recursive_mutex 与 std::mutex 一样,也是一种可以被上锁的对象,但是和 std::mutex 不同的是,std::recursive_mutex 允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,std::recursive_mutex 释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),可理解为 lock() 次数和 unlock() 次数相同,除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。
std::time_mutex 介绍
std::time_mutex 比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until()。
try_lock_for 函数接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与 std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回 false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
try_lock_until 函数则接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
下面的小例子说明了 std::time_mutex 的用法(参考)。
#include <iostream> // std::cout#include <chrono> // std::chrono::milliseconds#include <thread> // std::thread#include <mutex> // std::timed_mutexstd::timed_mutex mtx;void fireworks() { // waiting to get a lock: each thread prints "-" every 200ms: while (!mtx.try_lock_for(std::chrono::milliseconds(200))) { std::cout << "-"; } // got a lock! - wait for 1s, then this thread prints "*" std::this_thread::sleep_for(std::chrono::milliseconds(1000)); std::cout << "*\n"; mtx.unlock();}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(fireworks); for (auto& th : threads) th.join(); return 0;}
std::recursive_timed_mutex 介绍
和 std:recursive_mutex 与 std::mutex 的关系一样,std::recursive_timed_mutex 的特性也可以从 std::timed_mutex 推导出来,感兴趣的同鞋可以自行查阅。 ;-)
std::lock_guard 介绍
与 Mutex RAII 相关,方便线程对互斥量上锁。例子(参考):
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::lock_guard#include <stdexcept> // std::logic_errorstd::mutex mtx;void print_even (int x) { if (x%2==0) std::cout << x << " is even\n"; else throw (std::logic_error("not even"));}void print_thread_id (int id) { try { // using a local lock_guard to lock mtx guarantees unlocking on destruction / exception: std::lock_guard<std::mutex> lck (mtx); print_even(id); } catch (std::logic_error&) { std::cout << "[exception caught]\n"; }}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0;}
std::unique_lock 介绍
与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。例子(参考):
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lockstd::mutex mtx; // mutex for critical sectionvoid print_block (int n, char c) { // critical section (exclusive access to std::cout signaled by lifetime of lck): std::unique_lock<std::mutex> lck (mtx); for (int i=0; i<n; ++i) { std::cout << c; } std::cout << '\n';}int main (){ std::thread th1 (print_block,50,'*'); std::thread th2 (print_block,50,'$'); th1.join(); th2.join(); return 0;}
好了,本文暂时讲到这里,还剩下 std::try_lock,std::lock,std::call_once 三个函数没有讲到,留在下一篇博客中讲吧 ;-)
C++11 并发指南三(Lock 详解)
在 《C++11 并发指南三(std::mutex 详解)》一文中我们主要介绍了 C++11 标准中的互斥量(Mutex),并简单介绍了一下两种锁类型。本节将详细介绍一下 C++11 标准的锁类型。
C++11 标准为我们提供了两种基本的锁类型,分别如下:
- std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
- std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。
另外还提供了几个与锁类型相关的 Tag 类,分别如下:
std::adopt_lock_t,一个空的标记类,定义如下:
struct
adopt_lock_t {};
|
该类型的常量对象adopt_lock(adopt_lock 是一个常量对象,定义如下:
constexpr
|