Description
Permutationp is an ordered set of integersp1, p2, ..., pn, consisting ofn distinct positive integers, each of them doesn't exceedn. We'll denote the i-th element of permutation p aspi. We'll call numbern the size or the length of permutation p1, p2, ..., pn.
The decreasing coefficient of permutation p1, p2, ..., pn is the number of suchi (1 ≤ i < n), that pi > pi + 1.
You have numbers n and k. Your task is to print the permutation of length n with decreasing coefficient k.
Input
The single line contains two space-separated integers: n, k (1 ≤ n ≤ 105, 0 ≤ k < n) — the permutation length and the decreasing coefficient.
Output
In a single line print n space-separated integers:p1, p2, ..., pn — the permutation of lengthn with decreasing coefficient k.
If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.
Sample Input
5 2
1 5 2 4 3
3 0
1 2 3
3 2
3 2 1#include<cstdio> #include<iostream> using namespace std; int main(){ int n,k,i; while(cin>>n>>k){ for(i=0;i<k;i++){ printf("%d ",n-i); } for(i=1;i<=n-k;i++){ printf("%d ",i); } printf("\n"); } return 0; }
本文介绍了一个算法问题,即如何生成长度为n且下降系数为k的排列。下降系数定义为排列中满足pi > pi+1条件的元素对数量。文章提供了实现这一功能的C++代码示例。
681

被折叠的 条评论
为什么被折叠?



