Slightly Decreasing Permutations

本文介绍了一个算法问题,即如何生成长度为n且下降系数为k的排列。下降系数定义为排列中满足pi > pi+1条件的元素对数量。文章提供了实现这一功能的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Permutationp is an ordered set of integersp1,  p2,  ...,  pn, consisting ofn distinct positive integers, each of them doesn't exceedn. We'll denote the i-th element of permutation p aspi. We'll call numbern the size or the length of permutation p1,  p2,  ...,  pn.

The decreasing coefficient of permutation p1, p2, ..., pn is the number of suchi (1 ≤ i < n), that pi > pi + 1.

You have numbers n and k. Your task is to print the permutation of length n with decreasing coefficient k.

Input

The single line contains two space-separated integers: n, k (1 ≤ n ≤ 105, 0 ≤ k < n) — the permutation length and the decreasing coefficient.

Output

In a single line print n space-separated integers:p1, p2, ..., pn — the permutation of lengthn with decreasing coefficient k.

If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.

Sample Input

Input
5 2
Output
1 5 2 4 3 
Input
3 0
Output
1 2 3
Input
3 2
Output
3 2 1

#include<cstdio>
#include<iostream>
using namespace std;

int main(){
    int n,k,i;
    while(cin>>n>>k){
        for(i=0;i<k;i++){
            printf("%d ",n-i);
        }
        for(i=1;i<=n-k;i++){
            printf("%d ",i);
        }
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值