Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
//使用动态规划求最大子序列和
class Solution {
public static int maxSubArray(int[] nums) {
int currMaxSum = nums[0];
int maxSum = nums[0];
for (int i = 1; i < nums.length; i++) {
currMaxSum = Math.max(currMaxSum + nums[i], nums[i]);
maxSum = Math.max(maxSum, currMaxSum);
}
return maxSum;
}
}
本文深入探讨了如何寻找连续子数组的最大和,通过动态规划方法解决这一经典问题。以[-2,1,-3,4,-1,2,1,-5,4]为例,详细解释了算法原理及其实现过程,最终得出子数组[4,-1,2,1]具有最大和为6。
342

被折叠的 条评论
为什么被折叠?



