Pandas时间序列处理

本文介绍了Pandas中处理时间序列的关键操作,包括pd.to_datetime转换日期字符串,pd.date_range生成日期序列,Series.dt对象获取日期信息,strftime函数格式化日期,以及dt.timedelta计算时间差。重点掌握了pd.to_datetime、Series.dt对象和strftime函数的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本节我们介绍在处理日期时间时的一些常用的处理方法,以一份酒店入住数据为例进行讲解。pandas 用 Timestamp 表示时点数,在大多数情况下和 python 的 datetime 类型的使用方法是通用的。

首先读入数据:

data=pd.read_csv('data/hotel.csv')
data.head()

在这里插入图片描述

一、pd.to_datetime实现日期字符串转日期

  • api:pd.to_datetime(str) 字符串类型对象转换成日期类型对象
 In[]:data['入住日期'].dtype #查看'入住日期'列的类型  为object类型,即字符串对象
Out[]:dtype('O')
 In[]:data.loc[:,'入住日期']=pd.to_datetime(data['入住日期'])#将'入住日期'列抓换成日期型后赋给'入住日期'列
            data['入住日期'].dtype#再次输出'入住日期'列的类型  为日期型
Out[]:dtype('<M8[ns]')#日期类型

二、pd.date_range生成日期序列

  • api:pd.date_range(start=None, end=None, periods=None, freq=‘D’)
    • start:起始日期,字符串
    • end:终止日期,字符串
    • periods:期数,取值为整数或None
    • freq:频率或日期偏移量,取值为string或DateOffset,默认为’D’

该函数主要用于生成一个固定频率的时间索引,在调用构造方法时,必须指定start、end、periods中的两个参数值,否则报错。

In [12]: pd.date_range(start
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值