Unique Paths题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Unique Paths II题目:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
分析:
- 这两道都比较简单,对于动态规划题应该细心寻找dp[i][j]间的递归关系,本题就是dp[i][j]=dp[i-1][j]+dp[i][j-1]
- 有障碍时直接让dp[i][j]等于0即可
代码:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m=obstacleGrid.size();
int n=obstacleGrid[0].size();
vector<vector<int>> dp(m,vector<int>(n,0));
dp[0][0]=1;
for(int i=0;i<m;i++){
dp[i][0]=1;
if(obstacleGrid[i][0]==1){
dp[i][0]=0;
break;
}
}
for(int i=0;i<n;i++){
dp[0][i]=1;
if(obstacleGrid[0][i]==1){
dp[0][i]=0;
break;
}
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]==1)
dp[i][j]=0;
else
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
看别人的代码时,发现了更为简便的写法:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size() , n = obstacleGrid[0].size();
vector<vector<int>> dp(m+1,vector<int>(n+1,0));
dp[0][1] = 1;
for(int i = 1 ; i <= m ; ++i)
for(int j = 1 ; j <= n ; ++j)
if(!obstacleGrid[i-1][j-1])
dp[i][j] = dp[i-1][j]+dp[i][j-1];
return dp[m][n];
}
};