题目
Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
翻译
给定按升序排序的整数数组,找到给定目标值的起始和终止位置。
您的算法的运行时复杂度必须是O(log n)的顺序。
如果在数组中找不到目标,返回[-1, -1]
。
例如,
给定[5, 7, 7, 8, 8, 10]
和目标值8,
返回[3, 4]
。
采用二分法,因为要求target的左极限与右极限,所以要用二分法查找两次
时间复杂度O(logn)
递归法:
class Solution {
public:
int Binaryup(vector<int>& nums,int target,int begin,int end){
if(begin>end) return end;
int mid=begin+(end-begin)/2;
if(nums[mid]>target) return Binaryup(nums,target,begin,mid-1);
else return Binaryup(nums,target,mid+1,end);
}
int Binarylow(vector<int>& nums,int target,int begin,int end){
if(begin>end) return begin;
int mid=begin+(end-begin)/2;
if(nums[mid]<target) return Binarylow(nums,target,mid+1,end);
else return Binarylow(nums,target,begin,mid-1);
}
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> result(2,-1);
int h=Binaryup(nums,target,0,nums.size()-1);
int l=Binarylow(nums,target,0,nums.size()-1);
if(h>=l){
result[0]=l;
result[1]=h;
return result;
}
return result;
}
};
while循环:
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> res(2,-1);
if(nums.empty())
return res;
int l=0,r=nums.size()-1;
while(l<r){
int m=l+(r-l)/2;
if(nums[m]==target) r=m;
else if(nums[m]<target) l=m+1;
else r=m-1;
}
if(nums[l]==target)
res[0]=l;
else
return res;
r=nums.size()-1;
while(l<r){
int m=l+(r-l)/2+1;
if(nums[m]==target) l=m;
else if(nums[m]<target) l=m+1;
else r=m-1;
}
res[1]=l;
return res;
}
};