所谓的自定义分区,就是规定reduce任务的数量,例如下面的数据:
1 2
1 1
3 2
2 2
5 1
假设上面的数据分别对应矩形的长跟宽,你会发现里面有正方形跟长方形,现在我们按照面积大小从大到小排序,一个文件输出的是长方形的数据,一个输出的是正方形的数据,这里我们就要自定义一个分区:
package cn.edu.bjut.model;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;
public class MyPatitioner extends Partitioner<DataSortable, NullWritable> {
@Override
public int getPartition(DataSortable key, NullWritable value, int arg2) {
if(key.getFirst() == key.getSecond()) {
return 0; //如果是正方形就在第一个分区里面执行
} else {
return 1; //矩形就在分区二里面执行
}
}
}
然后主程序里面就是这样的,加上我们自定义的分区和reduce任务的数量:
package cn.edu.bjut.model;
import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class NumSort {
static final String INPUT_DIR = "hdfs://172.21.15.189:9000/input";
static final String OUTPUT_DIR = "hdfs://172.21.15.189:9000/output";
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Path path = new Path(OUTPUT_DIR);
FileSystem fileSystem = FileSystem.get(new URI(OUTPUT_DIR), conf);
if(fileSystem.exists(path)) {
fileSystem.delete(path, true);
}
Job job = new Job(conf, "NumSort");
FileInputFormat.setInputPaths(job, INPUT_DIR); //设置输入路径
FileOutputFormat.setOutputPath(job, path); //设置输出路径
job.setJarByClass(DataSortable.class);
job.setMapperClass(MyMapper.class); //设置自定义的mapper类
job.setMapOutputKeyClass(DataSortable.class);
job.setMapOutputValueClass(NullWritable.class);
job.setReducerClass(MyReducer.class); //设置自定义的reduce类
job.setOutputKeyClass(LongWritable.class); //设置输出的key的类型
job.setOutputValueClass(LongWritable.class); //设置输出的value类型
job.setPartitionerClass(MyPatitioner.class); //自定义分区
job.setNumReduceTasks(2); // 两个reduce任务
job.waitForCompletion(true); //开始执行
}
/**
* 自定义的map类
* @author Gary
*
*/
static class MyMapper extends Mapper<LongWritable, Text, DataSortable, NullWritable> {
@Override
protected void map(
LongWritable key,
Text value,
Mapper<LongWritable, Text, DataSortable, NullWritable>.Context context)
throws IOException, InterruptedException {
String[] nums = value.toString().split(" ");
DataSortable dataSortable = new DataSortable(nums[0], nums[1]);
context.write(dataSortable, NullWritable.get());
}
}
/**
* 自定义的reduce类
* @author Gary
*
*/
static class MyReducer extends Reducer<DataSortable, NullWritable, LongWritable, LongWritable> {
@Override
protected void reduce(
DataSortable key,
Iterable<NullWritable> value,
Reducer<DataSortable, NullWritable, LongWritable, LongWritable>.Context context)
throws IOException, InterruptedException {
context.write(new LongWritable(key.getFirst()), new LongWritable(key.getSecond()));
}
}
}
但是需要注意的是,直接运行这个程序是会报错的,必须打成jar包来运行,步骤如下:
然后选择jar文件:
点击next,选择输出路径:
再次点击next — next,到下面的界面,选择你的主方法:
将jar包ftp上传到linux,然后切换到该文件所在目录,执行命令hadoop jar data.jar
:
[root@localhost Public]# hadoop jar data.jar
Warning: $HADOOP_HOME is deprecated.
15/06/02 08:44:07 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
15/06/02 08:44:07 INFO input.FileInputFormat: Total input paths to process : 1
15/06/02 08:44:07 INFO util.NativeCodeLoader: Loaded the native-hadoop library
15/06/02 08:44:07 WARN snappy.LoadSnappy: Snappy native library not loaded
15/06/02 08:44:07 INFO mapred.JobClient: Running job: job_201506011333_0001
15/06/02 08:44:08 INFO mapred.JobClient: map 0% reduce 0%
15/06/02 08:44:15 INFO mapred.JobClient: map 100% reduce 0%
15/06/02 08:44:23 INFO mapred.JobClient: map 100% reduce 16%
15/06/02 08:44:24 INFO mapred.JobClient: map 100% reduce 33%
15/06/02 08:44:25 INFO mapred.JobClient: map 100% reduce 100%
15/06/02 08:44:26 INFO mapred.JobClient: Job complete: job_201506011333_0001
15/06/02 08:44:26 INFO mapred.JobClient: Counters: 29
15/06/02 08:44:26 INFO mapred.JobClient: Job Counters
15/06/02 08:44:26 INFO mapred.JobClient: Launched reduce tasks=2
15/06/02 08:44:26 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=6376
15/06/02 08:44:26 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
15/06/02 08:44:26 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
15/06/02 08:44:26 INFO mapred.JobClient: Launched map tasks=1
15/06/02 08:44:26 INFO mapred.JobClient: Data-local map tasks=1
15/06/02 08:44:26 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=19748
15/06/02 08:44:26 INFO mapred.JobClient: File Output Format Counters
15/06/02 08:44:26 INFO mapred.JobClient: Bytes Written=20
15/06/02 08:44:26 INFO mapred.JobClient: FileSystemCounters
15/06/02 08:44:26 INFO mapred.JobClient: FILE_BYTES_READ=102
15/06/02 08:44:26 INFO mapred.JobClient: HDFS_BYTES_READ=121
15/06/02 08:44:26 INFO mapred.JobClient: FILE_BYTES_WRITTEN=168973
15/06/02 08:44:26 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=20
15/06/02 08:44:26 INFO mapred.JobClient: File Input Format Counters
15/06/02 08:44:26 INFO mapred.JobClient: Bytes Read=20
15/06/02 08:44:26 INFO mapred.JobClient: Map-Reduce Framework
15/06/02 08:44:26 INFO mapred.JobClient: Map output materialized bytes=102
15/06/02 08:44:26 INFO mapred.JobClient: Map input records=5
15/06/02 08:44:26 INFO mapred.JobClient: Reduce shuffle bytes=102
15/06/02 08:44:26 INFO mapred.JobClient: Spilled Records=10
15/06/02 08:44:26 INFO mapred.JobClient: Map output bytes=80
15/06/02 08:44:26 INFO mapred.JobClient: Total committed heap usage (bytes)=191762432
15/06/02 08:44:26 INFO mapred.JobClient: CPU time spent (ms)=3190
15/06/02 08:44:26 INFO mapred.JobClient: Combine input records=0
15/06/02 08:44:26 INFO mapred.JobClient: SPLIT_RAW_BYTES=101
15/06/02 08:44:26 INFO mapred.JobClient: Reduce input records=5
15/06/02 08:44:26 INFO mapred.JobClient: Reduce input groups=5
15/06/02 08:44:26 INFO mapred.JobClient: Combine output records=0
15/06/02 08:44:26 INFO mapred.JobClient: Physical memory (bytes) snapshot=336629760
15/06/02 08:44:26 INFO mapred.JobClient: Reduce output records=5
15/06/02 08:44:26 INFO mapred.JobClient: Virtual memory (bytes) snapshot=2209480704
15/06/02 08:44:26 INFO mapred.JobClient: Map output records=5
成功后查看一下output文件夹里面的数据,你会发现现在两个输出文件,最下面的两个:
[root@localhost Public]# hadoop fs -ls /output
Warning: $HADOOP_HOME is deprecated.
Found 4 items
-rw-r--r-- 1 root supergroup 0 2015-06-02 08:44 /output/_SUCCESS
drwxr-xr-x - root supergroup 0 2015-06-02 08:44 /output/_logs
-rw-r--r-- 1 root supergroup 8 2015-06-02 08:44 /output/part-r-00000
-rw-r--r-- 1 root supergroup 12 2015-06-02 08:44 /output/part-r-00001
查看一下文件内容:
[root@localhost Public]# hadoop fs -cat /output/p*0
Warning: $HADOOP_HOME is deprecated.
1 1
2 2
[root@localhost Public]# hadoop fs -cat /output/p*1
Warning: $HADOOP_HOME is deprecated.
1 2
5 1
3 2