CSharp Algorithm - How to traverse binary tree by depth (Part I)

本文介绍如何使用C#实现二叉树的先序、中序和后序深度优先遍历。首先定义了二叉树节点类Node,然后创建了一个具体的二叉树实例,并通过递归方式实现了三种遍历方法。

/*

Author: Jiangong SUN

*/


In this article, I will introduce the traversal of binary tree in CSharp.

There are depth first traversal which includes: 

pre-order traversal: root node first, then left node, then right node

in-order traversal: left node first, then root node, then right node

post-order traversal: left node first, then right node, then root node

and breath first traversal which is level-order traversal.


In this post I will introduce the depth first traversal, and later for breath first traversal.


So, before we traverse a binary tree, we need to create it before. And before we create a tree, we need to create tree node. I assume the data hold the value, and the left node and right node are its children.

        public class Node<T>
        {
            public Node<T> LNode { get; set; }
            public Node<T> RNode { get; set; }
            public T Data { get; set; }
            public Node(T data)
            {
                Data = data;
            }
        }

Then, I need to create a binary tree.

        static Node<string> BinTree()
        {
            Node<string>[] binTree = new Node<string>[11];
            binTree[0] = new Node<string>("A");
            binTree[1] = new Node<string>("B");
            binTree[2] = new Node<string>("C");
            binTree[3] = new Node<string>("D");
            binTree[4] = new Node<string>("E");
            binTree[5] = new Node<string>("F");
            binTree[6] = new Node<string>("G");
            binTree[7] = new Node<string>("H");
            binTree[8] = new Node<string>("I");
            binTree[9] = new Node<string>("J");
            binTree[10] = new Node<string>("K");

            binTree[0].LNode = binTree[1];
            binTree[0].RNode = binTree[2];
            binTree[1].LNode = binTree[3];
            binTree[1].RNode = binTree[4];
            binTree[2].LNode = binTree[5];
            binTree[2].RNode = binTree[6];
            binTree[3].RNode = binTree[7];
            binTree[4].LNode = binTree[8];
            binTree[5].LNode = binTree[9];
            binTree[5].RNode = binTree[10];
            return binTree[0];
        }

Once I have the tree, I can think about creating the different binary tree traversals.

Firstly, let's see the pre-order traversal. 

The principe is the we get the root value, then its left node value and finally its right node value.

Remember: Left node is always before Right node.

        static void PreOrder<T>(Node<T> node)
        {
            if (node != null)
            {
                Console.WriteLine(node.Data);
                PreOrder<T>(node.LNode);
                PreOrder<T>(node.RNode);
            }
        }

In the previous method, we've used recursive method to get the node's child, and its child's child etc.


Then, we can see the in-order traversal. It just change the order of the three nodes.

The principe is the we get the its left node value, then root value, and finally its right node value.

        static void InOrder<T>(Node<T> node)
        {
            if (node != null)
            {
                PreOrder<T>(node.LNode);
                Console.WriteLine(node.Data);
                PreOrder<T>(node.RNode);
            }
        }

Finally, the post-order traversal.

The principe is the we get the its left node value, then its right node value, and finally its root value.

        static void PostOrder<T>(Node<T> node)
        {
            if (node != null)
            {
                PreOrder<T>(node.LNode);
                PreOrder<T>(node.RNode);
                Console.WriteLine(node.Data);
            }
        }

Now, we just need to call the different implementations and get the results.

        public static void Main()
        {
            Node<string> tree = BinTree();
            PreOrder<string>(tree); //result: A B D H E I C F J K G
            InOrder(tree); //result: B D H E I A C F J K G
            PostOrder<string>(tree); //result: B D H E I C F J K G A

            Console.ReadKey();
        }

So here, we've arrived at the end of this post, I hope this does help to you. Enjoy coding!


references:

http://en.wikipedia.org/wiki/Tree_traversal#Depth-first

http://wenku.baidu.com/view/61179c8171fe910ef12df886.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值