《人工智能工程师》逻辑回归 LogisticRegression

本文探讨了逻辑回归中Sigmoid函数的应用原理及其如何帮助确定决策边界。通过介绍数据样本的表示方法及如何利用参数θ进行分类预测,进一步解释了Sigmoid函数在二分类任务中的作用,并讨论了损失函数的设计目的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在逻辑回归里,不去拟合样本分布,而是确定决策边界。

sigmoid函数
sig = 1.0/(1 + np.exp(-x))

为什么需要这个函数?这个函数有个特点,当x<0时,0<y<0.5;x=0时,y=0.5;x>0时,1>y>0.5。那么,假设我想对数据做二分类,

首先从数据讲起。

1.数据是m行n列的数据(xij, i=1..m, j=1..n),那么,样本1是向量X1 =(x11,x12,x13...x1n),样本二是X2=(x21,x22...x2n)。向量一般是列向量,所以样本X可以表示为X=(X1,X2...Xn).T。样本X1每个小x需要一个参数θ,使得该θ能与X1点乘,所得E1为方程的值y1;每个样本X的小x都需要和θ点乘,θ的维度应该是1*n;最终获得Y的列向量 Y =(Y1,Y2,Y3...Yn).T。那么,可以得到一个参数θ,使得正样本的X.T.dotθ>0.5,负样本的X.T.dotθ<0.5。有什么用呢?

2.把Y向量带入sigmoid函数,就可得到每个样本的取值,取值均在0~1之间,这样,就可以和label作对比了。(有点问题)

损失函数

如何去评判分类的好或者不好呢?




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值