R语言实现前向逐步回归(前向选择模型)

本文介绍了使用R语言进行前向逐步回归的原理和步骤,包括数据导入、分组、特征选择及模型效果评估。通过遍历属性子集,每次选择最优特征加入集合,以最小化测试集误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前向逐步回归原理

前向逐步回归的过程是:遍历属性的一列子集,选择使模型效果最好的那一列属性。接着寻找与其组合效果最好的第二列属性,而不是遍历所有的两列子集。以此类推,每次遍历时,子集都包含上一次遍历得到的最优子集。这样,每次遍历都会选择一个新的属性添加到特征集合中,直至特征集合中特征个数不能再增加。

数据导入并分组

导入数据,将数据集抽取70%作为训练集,剩下30%作为测试集。特征与标签分开存放。

导入数据

R语言的实现如下图:
在这里插入图片描述
train和test中存储的数据情况如下:
在这里插入图片描述

特征与标签分开存放

R语言的实现如下图:
在这里插入图片描述

前向逐步回归构建输出特征集合

通过for循环,从属性的一个子集开始进行遍历。第一次遍历时,该子集为空。每一个属性被加入子集后,通过线性回归来拟合模型,并计算在测试集上的误差,每次遍历选择得到误差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值