有关数据仓库的数据存储和实现

数据仓库是处理大量复杂数据的有效解决方案。本文探讨了数据仓库的两种存储方式:关系数据库和多维数组,并介绍了不同级别的数据粒度。此外,文章详细阐述了数据仓库的实现步骤,包括确定用户需求、设计和建立数据库、提取和加载数据。数据存储的粒度管理和分割策略对于提高数据处理效率至关重要,而数据仓库的设计通常采用星型模式以优化查询性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当面对大量的数据,而且是各种各样类型的数据,还可能有的数据单元(粒度)很大,单纯靠数据库是不易解决,为了解决这些问题,提高系统后台的效率,就需要引进数据仓库。
有关数据仓库的数据存储的几个基本问题:
1、数据存储的方式?  
    数据仓库的数据由两种存储方式:一种是存储在关系数据库中,另一种是按多维的方式存储,也就是多维数组。
2、存储何种数据?
    数据仓库中存在不同的综合级别的数据。一般把数据分成四个级别,早期细节级数据,当前细节级数据,轻度综合级,高度综合级。不同的综合级别一般称为粒度。粒度越大,表示细节程度越低,综合程度越高。级别的划分是根据粒度进行的。
    数据仓库中还有一种是元数据,也就是关于数据的数据。传统数据库中的数据字典或者系统目录都是元数据,在数据仓库中  元数据表现为两种形式:一种是为了从操作型环境向数据仓库环境转换而建立的元数据,它包含了数据源的各种属性以及转换时的各种属性;另一种元数据是用来与多维模型和前端工具建立映射用的。
3、粒度与分割
     粒度是对数据仓库中的数据的综合程度高低的一个衡量。粒度越小,细节程度越高,综合程度越低,回答查询的种类越多;反之粒度越大,细节程度越低,综合程度越高,回答查询的种类越少。
    分割是将数据分散到各自的物理单元中去以便能分别独立处理,以提高数据处理的效率。数据分割后的数据单元成为分片。数据分割的标准可以根据实际情况来确定,通常可选择按日期、地域或者业务领域等进行分割,也可以按照多个标准组合分割。
4、追加时数据的组织方式
    这里说一种比较简单的情况,轮转综合文件。比如:数据存储单位被分为日、周、季度、年等几个级别。每天将数据记录在日记录集中;然后七天的数据被综合存放在周记录集中,每隔一季度周记录集中的数据被存放到季度记录集中,依此类推……这种方法把越早期的记录存放的综合程度越高,也就是粒度越大。

数据仓库的实现步骤
一般地,设计和创建数据仓库的步骤是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值