Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
import java.lang.Math; // headers MUST be above the first class
import java.util.*;
// one class needs to have a main() method
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
for(int i = triangle.size() - 2; i >= 0; i--)
for(int j = 0; j <= i; j++)
{
triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1)));
System.out.println(triangle);
}
return triangle.get(0).get(0);
}
public static void main(String[] args)
{
Solution test = new Solution();
List<Integer> list1 = Arrays.asList(new Integer[] {2});
List<Integer> list2 = Arrays.asList(new Integer[] {3,4});
List<Integer> list3 = Arrays.asList(new Integer[] {5,6,7});
List<Integer> list4 = Arrays.asList(new Integer[] {4,1,8,3});
List<List<Integer>> triangle = new ArrayList<>();
triangle.add(list1);
triangle.add(list2);
triangle.add(list3);
triangle.add(list4);
System.out.println(test.minimumTotal(triangle));
}
}
[[2], [3, 4], [6, 6, 7], [4, 1, 8, 3]]
[[2], [3, 4], [6, 7, 7], [4, 1, 8, 3]]
[[2], [3, 4], [6, 7, 10], [4, 1, 8, 3]]
[[2], [9, 4], [6, 7, 10], [4, 1, 8, 3]]
[[2], [9, 11], [6, 7, 10], [4, 1, 8, 3]]
[[11], [9, 11], [6, 7, 10], [4, 1, 8, 3]]
11