目录
spi_controller(旧称 spi_master)是 Linux SPI 子系统的核心结构体,用于抽象 SPI 控制器硬件并管理数据传输;
位置:kernel/common/include/linux/spi/spi.h
/**
* struct spi_controller - interface to SPI master or slave controller
* @dev: device interface to this driver
* @list: link with the global spi_controller list
* @bus_num: board-specific (and often SOC-specific) identifier for a
* given SPI controller.
* @num_chipselect: chipselects are used to distinguish individual
* SPI slaves, and are numbered from zero to num_chipselects.
* each slave has a chipselect signal, but it's common that not
* every chipselect is connected to a slave.
* @dma_alignment: SPI controller constraint on DMA buffers alignment.
* @mode_bits: flags understood by this controller driver
* @bits_per_word_mask: A mask indicating which values of bits_per_word are
* supported by the driver. Bit n indicates that a bits_per_word n+1 is
* supported. If set, the SPI core will reject any transfer with an
* unsupported bits_per_word. If not set, this value is simply ignored,
* and it's up to the individual driver to perform any validation.
* @min_speed_hz: Lowest supported transfer speed
* @max_speed_hz: Highest supported transfer speed
* @flags: other constraints relevant to this driver
* @slave: indicates that this is an SPI slave controller
* @max_transfer_size: function that returns the max transfer size for
* a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
* @max_message_size: function that returns the max message size for
* a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
* @io_mutex: mutex for physical bus access
* @bus_lock_spinlock: spinlock for SPI bus locking
* @bus_lock_mutex: mutex for exclusion of multiple callers
* @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
* @setup: updates the device mode and clocking records used by a
* device's SPI controller; protocol code may call this. This
* must fail if an unrecognized or unsupported mode is requested.
* It's always safe to call this unless transfers are pending on
* the device whose settings are being modified.
* @transfer: adds a message to the controller's transfer queue.
* @cleanup: frees controller-specific state
* @can_dma: determine whether this controller supports DMA
* @queued: whether this controller is providing an internal message queue
* @kworker: thread struct for message pump
* @kworker_task: pointer to task for message pump kworker thread
* @pump_messages: work struct for scheduling work to the message pump
* @queue_lock: spinlock to syncronise access to message queue
* @queue: message queue
* @idling: the device is entering idle state
* @cur_msg: the currently in-flight message
* @cur_msg_prepared: spi_prepare_message was called for the currently
* in-flight message
* @cur_msg_mapped: message has been mapped for DMA
* @xfer_completion: used by core transfer_one_message()
* @busy: message pump is busy
* @running: message pump is running
* @rt: whether this queue is set to run as a realtime task
* @auto_runtime_pm: the core should ensure a runtime PM reference is held
* while the hardware is prepared, using the parent
* device for the spidev
* @max_dma_len: Maximum length of a DMA transfer for the device.
* @prepare_transfer_hardware: a message will soon arrive from the queue
* so the subsystem requests the driver to prepare the transfer hardware
* by issuing this call
* @transfer_one_message: the subsystem calls the driver to transfer a single
* message while queuing transfers that arrive in the meantime. When the
* driver is finished with this message, it must call
* spi_finalize_current_message() so the subsystem can issue the next
* message
* @unprepare_transfer_hardware: there are currently no more messages on the
* queue so the subsystem notifies the driver that it may relax the
* hardware by issuing this call
* @set_cs: set the logic level of the chip select line. May be called
* from interrupt context.
* @prepare_message: set up the controller to transfer a single message,
* for example doing DMA mapping. Called from threaded
* context.
* @transfer_one: transfer a single spi_transfer.
* - return 0 if the transfer is finished,
* - return 1 if the transfer is still in progress. When
* the driver is finished with this transfer it must
* call spi_final