二分查找——两数相除【二分查找】

问题展示

给你两个整数,被除数 dividend 和除数 divisor。将两数相除,要求 不使用 乘法、除法和取余运算。

整数除法应该向零截断,也就是截去(truncate)其小数部分。例如,8.345 将被截断为 8 ,-2.7335 将被截断至 -2 。

返回被除数 dividend 除以除数 divisor 得到的  。

注意:假设我们的环境只能存储 32 位 有符号整数,其数值范围是 [−231,  231 − 1] 。本题中,如果商 严格大于 231 − 1 ,则返回 231 − 1 ;如果商 严格小于 -231 ,则返回 -231 。

思路与算法

根据「前言」部分的讨论,我们记被除数为 X,除数为 Y,并且 X 和 Y 都是负数。我们需要找出 X/Y 的结果 Z。Z 一定是正数或 0。

根据除法以及余数的定义,我们可以将其改成乘法的等价形式,即:

Z×Y≥X>(Z+1)×Y
因此,我们可以使用二分查找的方法得到 Z,即找出最大的 Z 使得 Z×Y≥X 成立。

由于我们不能使用乘法运算符,因此我们需要使用「快速乘」算法得到 Z×Y 的值。「快速乘」算法与「快速幂」类似,前者通过加法实现乘法,后者通过乘法实现幂运算。「快速幂」算法可以参考「50. Pow(x, n)」的官方题解,「快速乘」算法只需要在「快速幂」算法的基础上,将乘法运算改成加法运算即可。

 代码呈现

class Solution {
public:
    int divide(int dividend, int divisor) {
        // 考虑被除数为最小值的情况
        if (dividend == INT_MIN) {
            if (divisor == 1) {
                return INT_MIN;
            }
            if (divisor == -1) {
                return INT_MAX;
            }
        }
        // 考虑除数为最小值的情况
        if (divisor == INT_MIN) {
            return dividend == INT_MIN ? 1 : 0;
        }
        // 考虑被除数为 0 的情况
        if (dividend == 0) {
            return 0;
        }
        
        // 一般情况,使用二分查找
        // 将所有的正数取相反数,这样就只需要考虑一种情况
        bool rev = false;
        if (dividend > 0) {
            dividend = -dividend;
            rev = !rev;
        }
        if (divisor > 0) {
            divisor = -divisor;
            rev = !rev;
        }

        // 快速乘
        auto quickAdd = [](int y, int z, int x) {
            // x 和 y 是负数,z 是正数
            // 需要判断 z * y >= x 是否成立
            int result = 0, add = y;
            while (z) {
                if (z & 1) {
                    // 需要保证 result + add >= x
                    if (result < x - add) {
                        return false;
                    }
                    result += add;
                }
                if (z != 1) {
                    // 需要保证 add + add >= x
                    if (add < x - add) {
                        return false;
                    }
                    add += add;
                }
                // 不能使用除法
                z >>= 1;
            }
            return true;
        };
        
        int left = 1, right = INT_MAX, ans = 0;
        while (left <= right) {
            // 注意溢出,并且不能使用除法
            int mid = left + ((right - left) >> 1);
            bool check = quickAdd(divisor, mid, dividend);
            if (check) {
                ans = mid;
                // 注意溢出
                if (mid == INT_MAX) {
                    break;
                }
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }

        return rev ? -ans : ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值