The Android ION memory allocator(有删节)

ION内存管理详解
ION是Android 4.0中引入的一种通用内存管理器,用于解决不同设备间内存管理接口碎片化的问题。它通过管理多个内存池来防止内存碎片,并支持GPU、显示控制器等硬件的特殊需求。本文详细介绍了ION的工作原理、API接口以及如何从用户空间使用ION。

ION is a generalized memory manager that Google introduced in the Android 4.0 ICS (Ice Cream Sandwich) release to address the issue of fragmented memory management interfaces across different Android devices.

ION heaps
Like its PMEM-like predecessors, ION manages one or more memory pools, some of which are set aside at boot time to combat fragmentation or to serve special hardware needs. GPUs, display controllers, and cameras are some of the hardware blocks that may have special memory requirements. ION presents its memory pools as ION heaps. Each type of Android device can be provisioned with a different set of ION heaps according to the memory requirements of the device. The provider of an ION heap must implement the following set of callbacks:
   struct ion_heap_ops {
	int (*allocate) (struct ion_heap *heap,
			 struct ion_buffer *buffer, unsigned long len,
			 unsigned long align, unsigned long flags);
	void (*free) (struct ion_buffer *buffer);
	int (*phys) (struct ion_heap *heap, struct ion_buffer *buffer,
		     ion_phys_addr_t *addr, size_t *len);
	struct scatterlist *(*map_dma) (struct ion_heap *heap,
			 struct ion_buffer *buffer);
	void (*unmap_dma) (struct ion_heap *heap, 
	         struct ion_buffer *buffer);
	void * (*map_kernel) (struct ion_heap *heap, 
	         struct ion_buffer *buffer);
	void (*unmap_kernel) (struct ion_heap *heap, 
	         struct ion_buffer *buffer);
	int (*map_user) (struct ion_heap *heap, struct ion_buffer *buffer,
			 struct vm_area_struct *vma);
   };
Briefly,  allocate()  and  free()  obtain or release an  ion_buffer  object from the heap. A call to  phys()  will return the physical address and length of the buffer, but only for physically-contiguous buffers. If the heap does not provide physically contiguous buffers, it does not have to provide this callback. Here  ion_phys_addr_t is a typedef of  unsigned long , and will, someday, be replaced by  phys_addr_t  in include/linux/types.h . The  map_dma()  and  unmap_dma()  callbacks cause the buffer to be prepared (or unprepared) for DMA. The  map_kernel()  and  unmap_kernel()  callbacks map (or unmap) the physical memory into the kernel virtual address space. A call to map_user()  will map the memory to user space. There is no  unmap_user()  because the mapping is represented as a file descriptor in user space. The closing of that file descriptor will cause the memory to be unmapped from the calling process.

The default ION driver (which can be cloned from here) offers three heaps as listed below:

   ION_HEAP_TYPE_SYSTEM:        memory allocated via vmalloc_user().
   ION_HEAP_TYPE_SYSTEM_CONTIG: memory allocated via kzalloc.
   ION_HEAP_TYPE_CARVEOUT:	carveout memory is physically contiguous and set aside at boot.
Developers may choose to add more ION heaps. For example,  this NVIDIA patch  was submitted to add ION_HEAP_TYPE_IOMMU for hardware blocks equipped with an IOMMU.
Using ION from user space
Typically, user space device access libraries will use ION to allocate large contiguous media buffers. For example, the still camera library may allocate a capture buffer to be used by the camera device. Once the buffer is fully populated with video data, the library can pass the buffer to the kernel to be processed by a JPEG encoder hardware block.

A user space C/C++ program must have been granted access to the /dev/ion device before it can allocate memory from ION. A call to open("/dev/ion", O_RDONLY) returns a file descriptor as a handle representing an ION client. Yes, one can allocate writable memory with an O_RDONLY open. There can be no more than one client per user process. To allocate a buffer, the client needs to fill in all the fields except the handle field in this data structure:

   struct ion_allocation_data {
        size_t len;
        size_t align;
        unsigned int flags;
        struct ion_handle *handle;
   }
The  handle  field is the output parameter, while the first three fields specify the alignment, length and flags as input parameters. The  flags  field is a bit mask indicating one or more ION heaps to allocate from, with the fallback ordered according to which ION heap was first added via calls to  ion_device_add_heap() during boot. In the default implementation,  ION_HEAP_TYPE_CARVEOUT  is added before ION_HEAP_TYPE_CONTIG . The flags of  ION_HEAP_TYPE_CONTIG | ION_HEAP_TYPE_CARVEOUT  indicate the intention to allocate from  ION_HEAP_TYPE_CARVEOUT  with fallback to ION_HEAP_TYPE_CONTIG .

User-space clients interact with ION using the ioctl() system call interface. To allocate a buffer, the client makes this call:

   int ioctl(int client_fd, ION_IOC_ALLOC, struct ion_allocation_data *allocation_data)
This call returns a buffer represented by  ion_handle  which is not a CPU-accessible buffer pointer. The handle can only be used to obtain a file descriptor for buffer sharing as follows:
   int ioctl(int client_fd, ION_IOC_SHARE, struct ion_fd_data *fd_data);
Here  client_fd  is the file descriptor corresponding to  /dev/ion , and  fd_data  is a data structure with an input  handle  field and an output  fd  field, as defined below:
   struct ion_fd_data {
        struct ion_handle *handle;
        int fd;
   }
The  fd  field is the file descriptor that can be passed around for sharing. On Android devices the  BINDER  IPC mechanism may be used to send  fd  to another process for sharing. To obtain the shared buffer, the second user process must obtain a client handle first via the  open("/dev/ion", O_RDONLY)  system call. ION tracks its user space clients by the PID of the process (specifically, the PID of the thread that is the "group leader" in the process). Repeating the  open("/dev/ion", O_RDONLY) call in the same process will get back another file descriptor corresponding to the same client structure in the kernel.

To free the buffer, the second client needs to undo the effect of mmap() with a call to munmap(), and the first client needs to close the file descriptor it obtained via ION_IOC_SHARE, and call ION_IOC_FREE as follows:

     int ioctl(int client_fd, ION_IOC_FREE, struct ion_handle_data *handle_data);
Here  ion_handle_data  holds the handle as shown below:
     struct ion_handle_data {
	     struct ion_handle *handle;
     }
The  ION_IOC_FREE  command causes the handle's reference counter to be decremented by one. When this reference counter reaches zero, the  ion_handle  object gets destroyed and the affected ION bookkeeping data structure is updated.

User processes can also share ION buffers with a kernel driver, as explained in the next section.

Sharing ION buffers in the kernel

In the kernel, ION supports multiple clients, one for each driver that uses the ION functionality. A kernel driver calls the following function to obtain an ION client handle:

   struct ion_client *ion_client_create(struct ion_device *dev, 
                   unsigned int heap_mask, const char *debug_name)

The first argument, dev, is the global ION device associated with /dev/ion; why a global device is needed, and why it must be passed as a parameter, is not entirely clear. The second argument, heap_mask, selects one or more ION heaps in the same way as the ion_allocation_data. The flags field was covered in the previous section. For smart phone use cases involving multimedia middleware, the user process typically allocates the buffer from ION, obtains a file descriptor using the ION_IOC_SHARE command, then passes the file desciptor to a kernel driver. The kernel driver calls ion_import_fd() which converts the file descriptor to anion_handle object, as shown below:

    struct ion_handle *ion_import_fd(struct ion_client *client, int fd_from_user);
The  ion_handle  object is the driver's client-local reference to the shared buffer. The  ion_import_fd()  call looks up the physical address of the buffer to see whether the client has obtained a handle to the same buffer before, and if it has, this call simply increments the reference counter of the existing handle.

Some hardware blocks can only operate on physically-contiguous buffers with physical addresses, so affected drivers need to convert ion_handle to a physical buffer via this call:

   int ion_phys(struct ion_client *client, struct ion_handle *handle,
	       ion_phys_addr_t *addr, size_t *len)

Needless to say, if the buffer is not physically contiguous, this call will fail.

When handling calls from a client, ION always validates the input file descriptor, client and handle arguments. For example, when importing a file descriptor, ION ensures the file descriptor was indeed created by an ION_IOC_SHAREcommand. When ion_phys() is called, ION validates whether the buffer handle belongs to the list of handles the client is allowed to access, and returns error if the handle is not on the list. This validation mechanism reduces the likelihood of unwanted accesses and inadvertent resource leaks.

ION provides debug visibility through debugfs. It organizes debug information under /sys/kernel/debug/ion, with bookkeeping information in stored files associated with heaps and clients identified by symbolic names or PIDs.



转载链接: http://lwn.net/Articles/480055/

<think>我们正在处理用户关于Linux内核配置中DMAContiguousMemoryAllocator(CMA)的问题。用户希望了解如何启用或解决CMA缺失的问题。根据引用内容,我们可以总结以下几点关键信息:1.CMA(连续内存分配器)用于为设备驱动分配大块连续物理内存,当设备驱动不使用时,其他内核模块可以借用(要求申请可移动类型的页),当设备驱动需要时,再迁移已分配的页以形成连续内存块[^4]。2.引用[1]提到,在没有CMA或系统不允许阻塞的情况下,可以通过`__get_free_pages()`从DMA/普通区域(低端内存)分配内存,但这仅限于32位地址空间,且已经在低端内存区域由内核在启动时映射。3.引用[3]提到了一些解决方案,包括:汇总所有CMA需求并分配一个统一的CMA区域(对于单个CMA用户系统无效);调整`ARCH_FORCE_MAX_ORDER`配置参数以减少内存浪费(但会影响大页分配);对于较小的预留内存,CMA可以直接从伙伴分配器分配内存。因此,针对用户的问题,我们需要提供在内核配置中启用CMA以及解决相关问题的步骤和注意事项。###步骤指南####1.启用CMA在配置内核时,需要确保以下配置选项被启用:-`CONFIG_CMA`:启用连续内存分配器(CMA)功能。-`CONFIG_DMA_CMA`:如果用于DMA,则启用此选项(依赖`CONFIG_CMA`)。-其他与设备相关的CMA配置(如`CONFIG_CMA_SIZE_MBYTES`设置CMA区域大小)。**配置方法**:-使用`makemenuconfig`(或类似配置工具)进入内核配置界面。-导航至以下路径:```DeviceDrivers->GenericDriverOptions->ContiguousMemoryAllocator(CONFIG_CMA)[选中]DMAContiguousMemoryAllocator(CONFIG_DMA_CMA)[选中]```-在`CONFIG_CMA`下可以设置CMA区域的大小(例如`CONFIG_CMA_SIZE_MBYTES`,默认值可能为16MB,根据需求调整)。####2.解决CMA缺失问题如果系统配置中没有启用CMA,或者CMA区域不足,可以尝试以下方法:-**汇总CMA需求并分配统一区域**:在设备树(DeviceTree)或内核启动参数中指定一个足够大的CMA区域。例如,在内核启动参数中添加:```cma=128M```这将保留128MB的CMA区域。-**调整页块大小以减少浪费**:通过设置`ARCH_FORCE_MAX_ORDER`为较小值(如7),可以减小伙伴系统中最大可分配页块的大小,从而减少内存浪费。但注意这会影响大页分配(如透明大页THP)。在配置内核时,可以通过以下方式设置:```Processortypeandfeatures->Maximumzoneorder(ARCH_FORCE_MAX_ORDER)[设置为7]```-**对于小内存分配直接从伙伴系统获取**:如果设备驱动需要的内存块较小,可以考虑修改驱动代码,使其在CMA分配失败时回退到伙伴分配器(如使用`dma_alloc_coherent()`,它会尝试多种分配方式包括伙伴系统)。但此方法需要驱动支持,且不是通用解决方案。####3.验证CMA配置-系统启动后,检查`/proc/meminfo`:```cat/proc/meminfo|grepCma```输出应显示CMA区域的大小和已使用情况。-检查内核启动日志(`dmesg`)中是否有CMA初始化的信息,例如:```Reserved:128MB(CMA:128MB)```###注意事项-启用CMA可能会减少系统可用内存(因为CMA区域被预留),请根据实际需求设置大小。-调整`ARCH_FORCE_MAX_ORDER`可能影响系统性能,需谨慎评估。-如果设备驱动要求物理地址连续且较大,应确保CMA区域足够大,避免分配失败。###示例配置假设我们需要为某个DMA设备预留64MB的CMA区域,可以这样操作:1.内核配置中启用`CONFIG_CMA`和`CONFIG_DMA_CMA`,并设置`CONFIG_CMA_SIZE_MBYTES=64`。2.或者在内核启动参数中添加`cma=64M`。###引用说明根据引用内容,CMA的启用和配置涉及内核编译选项和启动参数[^1][^3][^4]。同时,引用[3]提供了几种解决CMA问题的思路,包括调整内核配置参数[^3]。§§相关问题§§1.如何在内核启动参数中设置CMA区域大小?2.如何验证CMA区域是否成功启用?3.调整`ARCH_FORCE_MAX_ORDER`对系统有哪些影响?4.设备驱动如何使用CMA分配的连续内存?</think>### Linux内核中启用DMA连续内存分配器(CMA)的配置指南 #### 1. **启用CMA内核配置选项** 在`make menuconfig`中配置: ```bash Device Drivers ---> Generic Driver Options ---> [*] Contiguous Memory Allocator (CMA) # 核心CMA支持 [*] DMA Contiguous Memory Allocator # DMA专用CMA (128) CMA size in MegaBytes # 设置CMA区域大小(单位MB) ``` **说明**: - `CONFIG_CMA`是基础支持,必须启用 - `CONFIG_DMA_CMA`提供DMA专用分配接口 - 大小建议设为设备DMA需求的1.5-2倍[^4] #### 2. **设备树(Device Tree)配置** 在设备树中为特定设备分配CMA区域: ```dts reserved-memory { #address-cells = <2>; #size-cells = <2>; ranges; mydevice_cma: linux,cma@90000000 { compatible = "shared-dma-pool"; reusable; size = <0x10000000>; // 256MB alignment = <0x2000>; linux,cma-default; }; }; mydevice { memory-region = <&mydevice_cma>; }; ``` #### 3. **解决CMA分配失败的方案** 当遇到"CMA not available"错误时: **方案1:调整内存区块大小** ```bash Processor type and features ---> (7) Maximum zone order (ARCH_FORCE_MAX_ORDER) # 默认值通常为11 ``` 减小此值可降低内存碎片但影响大页分配[^3] **方案2:预留统一CMA区域** 在内核启动参数添加: ```bash cma=256M@32M // 在32MB地址处保留256MB区域 ``` **方案3:伙伴分配器回退** 修改驱动代码,当CMA失败时回退到伙伴系统: ```c if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64))) { dev_warn(dev, "CMA failed, using buddy allocator"); ptr = __get_free_pages(GFP_KERNEL, order); } ``` #### 4. **验证CMA状态** ```bash # 查看CMA区域 cat /proc/meminfo | grep Cma # CmaTotal: 262144 kB # CmaFree: 131072 kB # 检查设备DMA映射 dmesg | grep -i "dma: allocated" # [ 1.234567] mydevice dma: allocated 64MB for DMA ``` #### 5. **关键注意事项** 1. CMA仅分配**可移动页面**,确保内核配置启用: ```bash Memory Management options ---> [*] Allow for memory compaction [*] Contiguous Memory Allocator ``` 2. 32位系统需确保CMA在低端内存区(DMA zone): ```c dma_declare_contiguous(dev, size, PHYS_OFFSET, 0); ``` 3. 避免SWIOTLB冲突: ```bash Boot options ---> [ ] Software IO TLB (SWIOTLB) ``` > CMA通过"预留-借用-迁移"机制平衡设备独占和系统内存使用[^4]。配置时应综合考虑设备DMA需求(`dma_mask`)和系统内存压力,建议优先使用设备树声明专用区域[^1][^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值