pytorch实现神经网络

本文深入探讨PyTorch中的自动求导机制,演示如何通过自定义网络结构进行前向传播,并利用自动求导计算梯度。同时,介绍了如何使用PyTorch的优化器更新网络参数,包括手动实现的简化SGD算法和系统内置的SGD优化器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch
import torch.nn as nn
import torch.nn.functional as F
import inspect
import torch.optim as optim
'''
 自动求导机制: 对一个标量用backward() 会反向计算在计算图中用到的叶节点的梯度, 如果设置了非叶节点.retain_grad
 则可以记录中间节点的梯度。  节点的grad_fn 记录了这个节点通过一个什么样的函数得来的
'''

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)


    # 定义好forward函数, 调用backward()会自动计算导数
    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(x.size()[0], -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


    def num_flat_features(self, x):
        # 取除了batchsize以外的维度
        pass

net = Net()
print(net)
input = torch.randn(1, 1, 32, 32)
output = net(input)
target = torch.randn(10)
# 添加一个批次的维度
target = target.view(1, -1)
criterion = nn.MSELoss()
loss = criterion(output, target)

net.zero_grad()
print(net.conv1.bias.grad)
loss.backward()
print(net.conv1.bias.grad)

params = list(net.parameters())
for i in range(len(params)):
    print(params[i].size(), '\n')

# 自定义的一个简化的SGD算法
learning_rate = 0.1
for f in net.parameters():
    # 利用sub in-place
    f.data.sub_(f.grad.data * learning_rate)

# 或者采用系统定义的优化方法
optimizer = optim.SGD(net.parameters(), lr=0.01)


net.parameters:

torch.Size([6, 1, 5, 5]) 

torch.Size([6]) 

torch.Size([16, 6, 5, 5]) 

torch.Size([16]) 

torch.Size([120, 400]) 

torch.Size([120]) 

torch.Size([84, 120]) 

torch.Size([84]) 

torch.Size([10, 84]) 

torch.Size([10]) 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值