1.树
1.1树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成的一个具有层次关系的集合。把它叫做树是因为他的形状和倒挂的树一样。
树的特点:
树有一个特殊的节点,叫根节点,根节点没有前驱节点。
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,同时可以有0个或多个后继。
可以说树是套娃定义的,树里面有子树,子树里又有子树,树是递归定义的。
注意:树形结构中,子树之间不能有交集(不能成环),否则就不是树形结构
1.2树的各种专有名词
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6;
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点;
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点;
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点;
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点;
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点;
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6;
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4;
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点;
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先;
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙;
森林:由m(m>0)棵互不相交的树的集合称为森林;
1.3 树的表示
相对与线性表的存储,树结构的存储要复杂些,既要保存值,又要保存结点和结点之间的关系,实际中树有很多中表示方式:双亲表示法,孩子表示法,孩子双亲表示法以及孩子兄弟表示法等。下面讲解其中最常见的孩子兄弟表示法。
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};
此种表示法就可以在单个节点中仅存两个指针和一个值,从而表示所有树形结构,例如: