A Simple Math Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3691 Accepted Submission(s): 1156
Problem Description
Given two positive integers a and b,find suitable X and Y to meet the conditions: X+Y=a Least Common Multiple (X, Y) =b
Input
Input includes multiple sets of test data.Each test data occupies one line,including two positive integers a(1≤a≤2*104),b(1≤b≤109),and their meanings are shown in the description.Contains most of the 12W test cases.
Output
For each set of input data,output a line of two integers,representing X, Y.If you cannot find such X and Y,output one line of “No Solution”(without quotation).
Sample Input
6 8
798 10780
Sample Output
No Solution
308 490
题意
给你a,b,求满足X+Y=a,lcm(X,Y)=b,的X,Y
思路
设X,Y的最大公约数为t,即gcd(X,Y)=tgcd(X,Y)=tgcd(X,Y)=t,那么有X=k1tX=k_{1}tX=k1t,Y=k2tY=k_{2}tY=k2t,其中k1,k2k_{1},k_{2}k1,k2互质,X+Y=(k1+k2)tX+Y=(k_{1}+k_{2})tX+Y=(k1+k2)t,lcm(X,Y)=XYt=k1k2tlcm(X,Y)=\frac{XY}{t}=k_{1}k_{2}tlcm(X,Y)=tXY=k1k2t,又因为k1+k2k_{1}+k_{2}k1+k2与k1k2k_{1}k_{2}k1k2互质,所以gcd(X+Y,lcm(X,Y))=tgcd(X+Y,lcm(X,Y))=tgcd(X+Y,lcm(X,Y))=t,又有gcd(X,Y)=tgcd(X,Y)=tgcd(X,Y)=t,所以gcd(X,Y)=gcd(X+Y,lcm(X,Y))=gcd(a,b)=tgcd(X,Y)=gcd(X+Y,lcm(X,Y))=gcd(a,b)=tgcd(X,Y)=gcd(X+Y,lcm(X,Y))=gcd(a,b)=t
然后又lcm(X,Y)=XYtlcm(X,Y)=\frac{XY}{t}lcm(X,Y)=tXY,Y=a−XY=a-XY=a−X
得X2−aX+tb=0X^{2}-aX+tb=0X2−aX+tb=0,其中t=gcd(a,b)t=gcd(a,b)t=gcd(a,b),用求根公式求解即可,X为较小一项,求完后再检验一下
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
long long gcd(long long a,long long b)
{
return b?gcd(b,a%b):a;
}
int main()
{
long long a,b;
while(scanf("%lld%lld",&a,&b)!=EOF)
{
int t=gcd(a,b);
if(a*a-4*t*b<0)
printf("No Solution\n");
else
{
long long x=min((a+sqrt(a*a-4*t*b))/2,(a-sqrt(a*a-4*t*b))/2);
long long y=a-x;
if(x*y/t==b)
printf("%lld %lld\n",x,y);
else
printf("No Solution\n");
}
}
return 0;
}