Primitive Roots
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 4062 | Accepted: 2420 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive
root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
#include<iostream>
#include<cstring>
using namespace std;
int euler(int n)
{
int i,ans=n;
for(i=2; i*i<=n; i++)
if(n%i==0)
{
ans=ans-ans/i;
while(n%i==0)
n/=i;//把该素因子全部约掉
//while(n%i==0);
}
if(n>1)
ans=ans-ans/n;
return ans;
}
int main()
{
int n;
while(cin>>n)
{
cout<<euler(n-1)<<endl;
}
return 0;
}