AlexNet

部署运行你感兴趣的模型镜像

AlexNet

简介

AlexNet网络,是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogleLeNet。其官方提供的数据模型,准确率达到57.1%,top 1-5 达到80.2%. 这项对于传统的机器学习分类算法而言,已经相当的出色。

论文:《ImageNet Classification with Deep Convolutional Neural Networks》

AlexNet创新点:

  • 成功应用ReLU激活函数(所有卷积层都使用ReLU作为非线性映射函数,使模型收敛速度更快
  • 成功使用Dropout机制(使用随机丢弃技术(dropout)选择性地忽略训练中的单个神经元,避免模型的过拟合
  • 使用了重叠最大池化(Max Pooling)(目前较少使用
  • 使用LRN对局部的特征进行归一化,结果作为ReLU激活函数的输入能有效降低错误率(局部响应归一化)(目前较少使用,以BN为主
  • 在多个GPU上进行模型的训练,不但可以提高模型的训练速度,还能提升数据的使用规模(目前训练使用较少
  • 使用了数据增强策略(Data Augmentation)缓和过拟合问题
    • 平移和翻转
    • 使用了PCA对RGB像素降维的方式

预测

对每张图像提取出5张(四个角落以及中间)以及水平镜像版本,总共10张,平均10个预测作为最终预测。

网络结构

在这里插入图片描述

在这里插入图片描述
自己在验证的时候,发现了一些BUG,input_image图像的大小应该为227x227x3,图注的253440计算有误,应该为55*55*48*2 (253400 = 48*48*55*2),另外,网络中每层的结构也找了一张非常PL的图,附下:
在这里插入图片描述
在这里插入图片描述

第一层:卷积层1,输入为 224×224×3,经过验算,原文应该有误,正确图像尺寸为 227×227×3的图像,卷积核的数量为96,论文中两片GPU分别计算48个核; 卷积核的大小为 11×11×3; stride = 4, stride表示的是步长,pad = 0, 表示不扩充边缘;
卷积后的图形大小是怎样的呢?
wide = (227 + 2 * padding - kernel_size) / stride + 1 = 55
height = (227 + 2 * padding - kernel_size) / stride + 1 = 55
dimention = 96
然后进行 (Local Response Normalized), 后面跟着池化pool_size = (3, 3), stride = 2, pad = 0 最终获得第一层卷积的feature map
最终第一层卷积的输出为2727128*2

第二层:卷积层2, 输入为上一层卷积的feature map, 卷积的个数为256个,论文中的两个GPU分别有128个卷积核。卷积核的大小为:5×5×48 ; pad = 2, stride = 1; 然后做 LRN,最后 max_pooling, pool_size = (3, 3), stride = 2;

第三层:卷积3, 输入为第二层的输出,卷积核个数为384, kernel_size = (3×3×256 563×3×256), padding = 1, 第三层没有做LRN和Pool

第四层:卷积4, 输入为第三层的输出,卷积核个数为384, kernel_size = (3×3 3), padding = 1, 和第三层一样,没有LRN和Pool

第五层:卷积5, 输入为第四层的输出,卷积核个数为256, kernel_size = (3×3 3), padding = 1。然后直接进行max_pooling, pool_size = (3, 3), stride = 2;

第6,7,8层是全连接层,每一层的神经元的个数为4096,最终输出softmax为1000,因为上面介绍过,ImageNet这个比赛的分类个数为1000。全连接层中使用了RELU和Dropout。

在这里插入图片描述

虽然AlexNet已经很少被使用,但该方法产生了巨大的影响

网络框架代码实现

注:模型训练使用的是单GPU。Image

import torch.nn as nn
from torchsummary import summary

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=96, kernel_size=11, stride=4),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.LocalResponseNorm(size=5, alpha=1e-4, beta=0.75, k=1.)
        )

        self.layer2 = nn.Sequential(
            nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, stride=1, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.LocalResponseNorm(size=5)
        )

        self.layer3 = nn.Sequential(
            nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
        )

        self.layer4 = nn.Sequential(
            nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True)
        )

        self.layer5 = nn.Sequential(
            nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2)
        )

        self.layer6 = nn.Sequential(
            nn.Linear(in_features=9216, out_features=4096),
            nn.ReLU(inplace=True),
            nn.Dropout()
        )

        self.layer7 = nn.Sequential(
            nn.Linear(in_features=4096, out_features=4096),
            nn.ReLU(inplace=True),
            nn.Dropout()
        )

        self.layer8 = nn.Linear(in_features=4096, out_features=num_classes)

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.layer5(x)
        x = x.view(x.size(0), -1)
        x = self.layer6(x)
        x = self.layer7(x)
        x = self.layer8(x)
        return x

model = AlexNet()
summary(model,(3,227,227))

运行完成后可查看网络整体模型框架等信息哦

完整代码:
https://link.zhihu.com/?target=https%3A//github.com/sloth2012/AlexNet

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### AlexNet 的背景与发展 AlexNet深度学习发展史上的里程碑式模型,标志着卷积神经网络(CNN)在大规模图像识别任务中的突破性成功。该模型由 Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 提出于2012年的论文 *ImageNet Classification with Deep Convolutional Neural Networks*,并在当年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中以远超传统方法的性能夺得冠军[^2]。 这一成果打破了以往基于手工特征提取(如SIFT、HOG)加浅层分类器的技术路线,证明了深层卷积神经网络可以直接从原始像素数据中自动学习有效的层次化特征表达,在复杂图像分类任务中具有强大优势[^2]。 --- ### AlexNet 架构详解 AlexNet 采用了一个相对深层的结构设计,共包含8层可学习参数的层:5个卷积层和3个全连接层[^2]。输入为 $227 \times 227 \times 3$ 的彩色图像,输出为1000类的类别概率分布。 #### 卷积部分 前五个层主要是卷积运算,用于逐步提取空间局部特征: - **第1层**:使用96个大小为 $11 \times 11$、步幅为4的卷积核,作用于输入图像;随后接最大池化层($3 \times 3$,步幅2),缓解过拟合并降低维度。 - **第2层**:应用256个 $5 \times 5$ 卷积核,同样带有最大池化。 - 后续三层为连续的卷积操作,分别使用384、384和256个 $3 \times 3$ 卷积核,无立即跟随的池化层。 这种逐层加深的设计使得高层能够捕获更抽象的语义信息,而底层专注于边缘、纹理等基础模式[^4]。 #### 激活函数与正则化机制 AlexNet 首次广泛采用了 ReLU(Rectified Linear Unit)作为激活函数: $$ \text{ReLU}(x) = \max(0, x) $$ 相比传统的 sigmoid 或 tanh 函数,ReLU 显著加快了训练速度,并有效缓解梯度消失问题[^2]。 为了防止过拟合,引入了 Dropout 技术,在训练过程中随机将一部分神经元输出置零(通常比例设为0.5),从而提升泛化能力[^2]。 此外,还使用了局部响应归一化(Local Response Normalization, LRN),旨在模仿生物神经系统的侧抑制现象,增强模型泛化效果。尽管后续研究表明其实际贡献有限,但在当时被认为是重要组件之一[^4]。 #### 数据增强策略 通过水平翻转、裁剪以及RGB色彩扰动等方式扩充训练样本数量,提高模型鲁棒性和不变性特性,使网络具备一定的平移、光照和形变容忍能力[^5]。 ```python import torch.nn as nn class AlexNet(nn.Module): def __init__(num_classes=1000): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x ``` --- ### 关键创新点总结 | 创新 | 描述 | |------|------| | 使用 GPU 加速训练 | AlexNet 利用双GPU并行计算实现高效训练,解决了早期难以训练深网的问题[^2] | | ReLU 激活函数 | 替代饱和型非线性单元,加速收敛过程[^2] | | Dropout 正则化 | 减少全连接层之间的协同适应,改善过拟合[^2] | | 数据增强 | 扩充训练集多样性,提升模型对变换的鲁棒性[^5] | 这些技术创新共同推动了现代深度学习框架的发展方向。 --- ### 对后续模型的影响 AlexNet 成功激发了一系列更深更强的 CNN 结构研究,形成了典型的演进路径: - **ZFNet (2013)**:微调 AlexNet 中的第一层卷积核尺寸,优化可视化解释能力; - **VGGNet (2014)**:统一使用小卷积核堆叠代替大卷积核,验证深度的重要性; - **GoogLeNet / Inception Module (2014)**:提出多分支结构减少参数量的同时保持高性能; - **ResNet (2015)**:引入残差连接解决极深层次下的退化问题,支持上百甚至上千层网络[^4]。 因此,可以说 AlexNet 不仅是一个成功的竞赛模型,更是开启“深度”时代的关键起点。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fighting_1997

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值