Temporary-Post-Used-For-Style-Detection-Title-575029888

样式检测内容示例
Temporary-Post-Used-For-Style-Detection-Content-575029888

=-=-=-=-=
Powered by Blogilo

from data import COCODetection, get_label_map, MEANS, COLORS from yolact import Yolact from utils.augmentations import BaseTransform, FastBaseTransform, Resize from utils.functions import MovingAverage, ProgressBar from layers.box_utils import jaccard, center_size, mask_iou from utils import timer from utils.functions import SavePath from layers.output_utils import postprocess, undo_image_transformation import pycocotools from data import cfg, set_cfg, set_dataset import numpy as np import torch import torch.backends.cudnn as cudnn from torch.autograd import Variable import argparse import time import random import cProfile import pickle import json import os from collections import defaultdict from pathlib import Path from collections import OrderedDict from PIL import Image import matplotlib.pyplot as plt import cv2 def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def parse_args(argv=None): parser = argparse.ArgumentParser( description='YOLACT COCO Evaluation') parser.add_argument('--trained_model', default='weights/yolact_base_105_101798_interrupt.pth', type=str, help='Trained state_dict file path to open. If "interrupt", this will open the interrupt file.') parser.add_argument('--top_k', default=5, type=int, help='Further restrict the number of predictions to parse') parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to evaulate model') parser.add_argument('--fast_nms', default=True, type=str2bool, help='Whether to use a faster, but not entirely correct version of NMS.') parser.add_argument('--cross_class_nms', default=False, type=str2bool, help='Whether compute NMS cross-class or per-class.') parser.add_argument('--display_masks', default=True, type=str2bool, help='Whether or not to display masks over bounding boxes') parser.add_argument('--display_bboxes', default=True, type=str2bool, help='Whether or not to display bboxes around masks') parser.add_argument('--display_text', default=True, type=str2bool, help='Whether or not to display text (class [score])') parser.add_argument('--display_scores', default=True, type=str2bool, help='Whether or not to display scores in addition to classes') parser.add_argument('--display', dest='display', action='store_true', help='Display qualitative results instead of quantitative ones.') parser.add_argument('--shuffle', dest='shuffle', action='store_true', help='Shuffles the images when displaying them. Doesn\'t have much of an effect when display is off though.') parser.add_argument('--ap_data_file', default='results/ap_data.pkl', type=str, help='In quantitative mode, the file to save detections before calculating mAP.') parser.add_argument('--resume', dest='resume', action='store_true', help='If display not set, this resumes mAP calculations from the ap_data_file.') parser.add_argument('--max_images', default=-1, type=int, help='The maximum number of images from the dataset to consider. Use -1 for all.') parser.add_argument('--output_coco_json', dest='output_coco_json', action='store_true', help='If display is not set, instead of processing IoU values, this just dumps detections into the coco json file.') parser.add_argument('--bbox_det_file', default='results/bbox_detections.json', type=str, help='The output file for coco bbox results if --coco_results is set.') parser.add_argument('--mask_det_file', default='results/mask_detections.json', type=str, help='The output file for coco mask results if --coco_results is set.') parser.add_argument('--config', default=None, help='The config object to use.') parser.add_argument('--output_web_json', dest='output_web_json', action='store_true', help='If display is not set, instead of processing IoU values, this dumps detections for usage with the detections viewer web thingy.') parser.add_argument('--web_det_path', default='web/dets/', type=str, help='If output_web_json is set, this is the path to dump detections into.') parser.add_argument('--no_bar', dest='no_bar', action='store_true', help='Do not output the status bar. This is useful for when piping to a file.') parser.add_argument('--display_lincomb', default=False, type=str2bool, help='If the config uses lincomb masks, output a visualization of how those masks are created.') parser.add_argument('--benchmark', default=False, dest='benchmark', action='store_true', help='Equivalent to running display mode but without displaying an image.') parser.add_argument('--no_sort', default=False, dest='no_sort', action='store_true', help='Do not sort images by hashed image ID.') parser.add_argument('--seed', default=None, type=int, help='The seed to pass into random.seed. Note: this is only really for the shuffle and does not (I think) affect cuda stuff.') parser.add_argument('--mask_proto_debug', default=False, dest='mask_proto_debug', action='store_true', help='Outputs stuff for scripts/compute_mask.py.') parser.add_argument('--no_crop', default=False, dest='crop', action='store_false', help='Do not crop output masks with the predicted bounding box.') parser.add_argument('--image', default=None, type=str, help='A path to an image to use for display.') parser.add_argument('--images', default='E:/yolact-master/coco/images/train2017', type=str, help='Input and output paths separated by a colon.') parser.add_argument('--video', default=None, type=str, help='A path to a video to evaluate on. Passing in a number will use that index webcam.') parser.add_argument('--video_multiframe', default=1, type=int, help='The number of frames to evaluate in parallel to make videos play at higher fps.') parser.add_argument('--score_threshold', default=0.15, type=float, help='Detections with a score under this threshold will not be considered. This currently only works in display mode.') parser.add_argument('--dataset', default=None, type=str, help='If specified, override the dataset specified in the config with this one (example: coco2017_dataset).') parser.add_argument('--detect', default=False, dest='detect', action='store_true', help='Don\'t evauluate the mask branch at all and only do object detection. This only works for --display and --benchmark.') parser.add_argument('--display_fps', default=False, dest='display_fps', action='store_true', help='When displaying / saving video, draw the FPS on the frame') parser.add_argument('--emulate_playback', default=False, dest='emulate_playback', action='store_true', help='When saving a video, emulate the framerate that you\'d get running in real-time mode.') parser.set_defaults(no_bar=False, display=False, resume=False, output_coco_json=False, output_web_json=False, shuffle=False, benchmark=False, no_sort=False, no_hash=False, mask_proto_debug=False, crop=True, detect=False, display_fps=False, emulate_playback=False) global args args = parser.parse_args(argv) if args.output_web_json: args.output_coco_json = True if args.seed is not None: random.seed(args.seed) iou_thresholds = [x / 100 for x in range(50, 100, 5)] coco_cats = {} # Call prep_coco_cats to fill this coco_cats_inv = {} color_cache = defaultdict(lambda: {}) def prep_display(dets_out, img, h, w, undo_transform=True, class_color=False, mask_alpha=0.45, fps_str=''): """ Note: If undo_transform=False then im_h and im_w are allowed to be None. """ if undo_transform: img_numpy = undo_image_transformation(img, w, h) img_gpu = torch.Tensor(img_numpy).cuda() else: img_gpu = img / 255.0 h, w, _ = img.shape with timer.env('Postprocess'): save = cfg.rescore_bbox cfg.rescore_bbox = True t = postprocess(dets_out, w, h, visualize_lincomb = args.display_lincomb, crop_masks = args.crop, score_threshold = args.score_threshold) cfg.rescore_bbox = save with timer.env('Copy'): idx = t[1].argsort(0, descending=True)[:args.top_k] if cfg.eval_mask_branch: # Masks are drawn on the GPU, so don't copy masks = t[3][idx] classes, scores, boxes = [x[idx].cpu().numpy() for x in t[:3]] num_dets_to_consider = min(args.top_k, classes.shape[0]) for j in range(num_dets_to_consider): if scores[j] < args.score_threshold: num_dets_to_consider = j break # Quick and dirty lambda for selecting the color for a particular index # Also keeps track of a per-gpu color cache for maximum speed def get_color(j, on_gpu=None): global color_cache color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS) if on_gpu is not None and color_idx in color_cache[on_gpu]: return color_cache[on_gpu][color_idx] else: color = COLORS[color_idx] if not undo_transform: # The image might come in as RGB or BRG, depending color = (color[2], color[1], color[0]) if on_gpu is not None: color = torch.Tensor(color).to(on_gpu).float() / 255. color_cache[on_gpu][color_idx] = color return color # First, draw the masks on the GPU where we can do it really fast # Beware: very fast but possibly unintelligible mask-drawing code ahead # I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice if args.display_masks and cfg.eval_mask_branch and num_dets_to_consider > 0: # After this, mask is of size [num_dets, h, w, 1] masks = masks[:num_dets_to_consider, :, :, None] # Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1]) colors = torch.cat([get_color(j, on_gpu=img_gpu.device.index).view(1, 1, 1, 3) for j in range(num_dets_to_consider)], dim=0) masks_color = masks.repeat(1, 1, 1, 3) * colors * mask_alpha # This is 1 everywhere except for 1-mask_alpha where the mask is inv_alph_masks = masks * (-mask_alpha) + 1 # I did the math for this on pen and paper. This whole block should be equivalent to: # for j in range(num_dets_to_consider): # img_gpu = img_gpu * inv_alph_masks[j] + masks_color[j] masks_color_summand = masks_color[0] if num_dets_to_consider > 1: inv_alph_cumul = inv_alph_masks[:(num_dets_to_consider-1)].cumprod(dim=0) masks_color_cumul = masks_color[1:] * inv_alph_cumul masks_color_summand += masks_color_cumul.sum(dim=0) img_gpu = img_gpu * inv_alph_masks.prod(dim=0) + masks_color_summand if args.display_fps: # Draw the box for the fps on the GPU font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize(fps_str, font_face, font_scale, font_thickness)[0] img_gpu[0:text_h+8, 0:text_w+8] *= 0.6 # 1 - Box alpha # Then draw the stuff that needs to be done on the cpu # Note, make sure this is a uint8 tensor or opencv will not anti alias text for whatever reason img_numpy = (img_gpu * 255).byte().cpu().numpy() if args.display_fps: # Draw the text on the CPU text_pt = (4, text_h + 2) text_color = [255, 255, 255] cv2.putText(img_numpy, fps_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA) if num_dets_to_consider == 0: return img_numpy if args.display_text or args.display_bboxes: for j in reversed(range(num_dets_to_consider)): x1, y1, x2, y2 = boxes[j, :] color = get_color(j) score = scores[j] if args.display_bboxes: cv2.rectangle(img_numpy, (x1, y1), (x2, y2), color, 1) if args.display_text: _class = cfg.dataset.class_names[classes[j]] text_str = '%s: %.2f' % (_class, score) if args.display_scores else _class font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize(text_str, font_face, font_scale, font_thickness)[0] text_pt = (x1, y1 - 3) text_color = [255, 255, 255] cv2.rectangle(img_numpy, (x1, y1), (x1 + text_w, y1 - text_h - 4), color, -1) cv2.putText(img_numpy, text_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA) return img_numpy def prep_benchmark(dets_out, h, w): with timer.env('Postprocess'): t = postprocess(dets_out, w, h, crop_masks=args.crop, score_threshold=args.score_threshold) with timer.env('Copy'): classes, scores, boxes, masks = [x[:args.top_k] for x in t] if isinstance(scores, list): box_scores = scores[0].cpu().numpy() mask_scores = scores[1].cpu().numpy() else: scores = scores.cpu().numpy() classes = classes.cpu().numpy() boxes = boxes.cpu().numpy() masks = masks.cpu().numpy() with timer.env('Sync'): # Just in case torch.cuda.synchronize() def prep_coco_cats(): """ Prepare inverted table for category id lookup given a coco cats object. """ for coco_cat_id, transformed_cat_id_p1 in get_label_map().items(): transformed_cat_id = transformed_cat_id_p1 - 1 coco_cats[transformed_cat_id] = coco_cat_id coco_cats_inv[coco_cat_id] = transformed_cat_id def get_coco_cat(transformed_cat_id): """ transformed_cat_id is [0,80) as indices in cfg.dataset.class_names """ return coco_cats[transformed_cat_id] def get_transformed_cat(coco_cat_id): """ transformed_cat_id is [0,80) as indices in cfg.dataset.class_names """ return coco_cats_inv[coco_cat_id] class Detections: def __init__(self): self.bbox_data = [] self.mask_data = [] def add_bbox(self, image_id:int, category_id:int, bbox:list, score:float): """ Note that bbox should be a list or tuple of (x1, y1, x2, y2) """ bbox = [bbox[0], bbox[1], bbox[2]-bbox[0], bbox[3]-bbox[1]] # Round to the nearest 10th to avoid huge file sizes, as COCO suggests bbox = [round(float(x)*10)/10 for x in bbox] self.bbox_data.append({ 'image_id': int(image_id), 'category_id': get_coco_cat(int(category_id)), 'bbox': bbox, 'score': float(score) }) def add_mask(self, image_id:int, category_id:int, segmentation:np.ndarray, score:float): """ The segmentation should be the full mask, the size of the image and with size [h, w]. """ rle = pycocotools.mask.encode(np.asfortranarray(segmentation.astype(np.uint8))) rle['counts'] = rle['counts'].decode('ascii') # json.dump doesn't like bytes strings self.mask_data.append({ 'image_id': int(image_id), 'category_id': get_coco_cat(int(category_id)), 'segmentation': rle, 'score': float(score) }) def dump(self): dump_arguments = [ (self.bbox_data, args.bbox_det_file), (self.mask_data, args.mask_det_file) ] for data, path in dump_arguments: with open(path, 'w') as f: json.dump(data, f) def dump_web(self): """ Dumps it in the format for my web app. Warning: bad code ahead! """ config_outs = ['preserve_aspect_ratio', 'use_prediction_module', 'use_yolo_regressors', 'use_prediction_matching', 'train_masks'] output = { 'info' : { 'Config': {key: getattr(cfg, key) for key in config_outs}, } } image_ids = list(set([x['image_id'] for x in self.bbox_data])) image_ids.sort() image_lookup = {_id: idx for idx, _id in enumerate(image_ids)} output['images'] = [{'image_id': image_id, 'dets': []} for image_id in image_ids] # These should already be sorted by score with the way prep_metrics works. for bbox, mask in zip(self.bbox_data, self.mask_data): image_obj = output['images'][image_lookup[bbox['image_id']]] image_obj['dets'].append({ 'score': bbox['score'], 'bbox': bbox['bbox'], 'category': cfg.dataset.class_names[get_transformed_cat(bbox['category_id'])], 'mask': mask['segmentation'], }) with open(os.path.join(args.web_det_path, '%s.json' % cfg.name), 'w') as f: json.dump(output, f) def _mask_iou(mask1, mask2, iscrowd=False): with timer.env('Mask IoU'): ret = mask_iou(mask1, mask2, iscrowd) return ret.cpu() def _bbox_iou(bbox1, bbox2, iscrowd=False): with timer.env('BBox IoU'): ret = jaccard(bbox1, bbox2, iscrowd) return ret.cpu() def prep_metrics(ap_data, dets, img, gt, gt_masks, h, w, num_crowd, image_id, detections:Detections=None): """ Returns a list of APs for this image, with each element being for a class """ if not args.output_coco_json: with timer.env('Prepare gt'): gt_boxes = torch.Tensor(gt[:, :4]) gt_boxes[:, [0, 2]] *= w gt_boxes[:, [1, 3]] *= h gt_classes = list(gt[:, 4].astype(int)) gt_masks = torch.Tensor(gt_masks).view(-1, h*w) if num_crowd > 0: split = lambda x: (x[-num_crowd:], x[:-num_crowd]) crowd_boxes , gt_boxes = split(gt_boxes) crowd_masks , gt_masks = split(gt_masks) crowd_classes, gt_classes = split(gt_classes) with timer.env('Postprocess'): classes, scores, boxes, masks = postprocess(dets, w, h, crop_masks=args.crop, score_threshold=args.score_threshold) if classes.size(0) == 0: return classes = list(classes.cpu().numpy().astype(int)) if isinstance(scores, list): box_scores = list(scores[0].cpu().numpy().astype(float)) mask_scores = list(scores[1].cpu().numpy().astype(float)) else: scores = list(scores.cpu().numpy().astype(float)) box_scores = scores mask_scores = scores masks = masks.view(-1, h*w).cuda() boxes = boxes.cuda() if args.output_coco_json: with timer.env('JSON Output'): boxes = boxes.cpu().numpy() masks = masks.view(-1, h, w).cpu().numpy() for i in range(masks.shape[0]): # Make sure that the bounding box actually makes sense and a mask was produced if (boxes[i, 3] - boxes[i, 1]) * (boxes[i, 2] - boxes[i, 0]) > 0: detections.add_bbox(image_id, classes[i], boxes[i,:], box_scores[i]) detections.add_mask(image_id, classes[i], masks[i,:,:], mask_scores[i]) return with timer.env('Eval Setup'): num_pred = len(classes) num_gt = len(gt_classes) mask_iou_cache = _mask_iou(masks, gt_masks) bbox_iou_cache = _bbox_iou(boxes.float(), gt_boxes.float()) if num_crowd > 0: crowd_mask_iou_cache = _mask_iou(masks, crowd_masks, iscrowd=True) crowd_bbox_iou_cache = _bbox_iou(boxes.float(), crowd_boxes.float(), iscrowd=True) else: crowd_mask_iou_cache = None crowd_bbox_iou_cache = None box_indices = sorted(range(num_pred), key=lambda i: -box_scores[i]) mask_indices = sorted(box_indices, key=lambda i: -mask_scores[i]) iou_types = [ ('box', lambda i,j: bbox_iou_cache[i, j].item(), lambda i,j: crowd_bbox_iou_cache[i,j].item(), lambda i: box_scores[i], box_indices), ('mask', lambda i,j: mask_iou_cache[i, j].item(), lambda i,j: crowd_mask_iou_cache[i,j].item(), lambda i: mask_scores[i], mask_indices) ] timer.start('Main loop') for _class in set(classes + gt_classes): ap_per_iou = [] num_gt_for_class = sum([1 for x in gt_classes if x == _class]) for iouIdx in range(len(iou_thresholds)): iou_threshold = iou_thresholds[iouIdx] for iou_type, iou_func, crowd_func, score_func, indices in iou_types: gt_used = [False] * len(gt_classes) ap_obj = ap_data[iou_type][iouIdx][_class] ap_obj.add_gt_positives(num_gt_for_class) for i in indices: if classes[i] != _class: continue max_iou_found = iou_threshold max_match_idx = -1 for j in range(num_gt): if gt_used[j] or gt_classes[j] != _class: continue iou = iou_func(i, j) if iou > max_iou_found: max_iou_found = iou max_match_idx = j if max_match_idx >= 0: gt_used[max_match_idx] = True ap_obj.push(score_func(i), True) else: # If the detection matches a crowd, we can just ignore it matched_crowd = False if num_crowd > 0: for j in range(len(crowd_classes)): if crowd_classes[j] != _class: continue iou = crowd_func(i, j) if iou > iou_threshold: matched_crowd = True break # All this crowd code so that we can make sure that our eval code gives the # same result as COCOEval. There aren't even that many crowd annotations to # begin with, but accuracy is of the utmost importance. if not matched_crowd: ap_obj.push(score_func(i), False) timer.stop('Main loop') class APDataObject: """ Stores all the information necessary to calculate the AP for one IoU and one class. Note: I type annotated this because why not. """ def __init__(self): self.data_points = [] self.num_gt_positives = 0 def push(self, score:float, is_true:bool): self.data_points.append((score, is_true)) def add_gt_positives(self, num_positives:int): """ Call this once per image. """ self.num_gt_positives += num_positives def is_empty(self) -> bool: return len(self.data_points) == 0 and self.num_gt_positives == 0 def get_ap(self) -> float: """ Warning: result not cached. """ if self.num_gt_positives == 0: return 0 # Sort descending by score self.data_points.sort(key=lambda x: -x[0]) precisions = [] recalls = [] num_true = 0 num_false = 0 # Compute the precision-recall curve. The x axis is recalls and the y axis precisions. for datum in self.data_points: # datum[1] is whether the detection a true or false positive if datum[1]: num_true += 1 else: num_false += 1 precision = num_true / (num_true + num_false) recall = num_true / self.num_gt_positives precisions.append(precision) recalls.append(recall) # Smooth the curve by computing [max(precisions[i:]) for i in range(len(precisions))] # Basically, remove any temporary dips from the curve. # At least that's what I think, idk. COCOEval did it so I do too. for i in range(len(precisions)-1, 0, -1): if precisions[i] > precisions[i-1]: precisions[i-1] = precisions[i] # Compute the integral of precision(recall) d_recall from recall=0->1 using fixed-length riemann summation with 101 bars. y_range = [0] * 101 # idx 0 is recall == 0.0 and idx 100 is recall == 1.00 x_range = np.array([x / 100 for x in range(101)]) recalls = np.array(recalls) # I realize this is weird, but all it does is find the nearest precision(x) for a given x in x_range. # Basically, if the closest recall we have to 0.01 is 0.009 this sets precision(0.01) = precision(0.009). # I approximate the integral this way, because that's how COCOEval does it. indices = np.searchsorted(recalls, x_range, side='left') for bar_idx, precision_idx in enumerate(indices): if precision_idx < len(precisions): y_range[bar_idx] = precisions[precision_idx] # Finally compute the riemann sum to get our integral. # avg([precision(x) for x in 0:0.01:1]) return sum(y_range) / len(y_range) def badhash(x): """ Just a quick and dirty hash function for doing a deterministic shuffle based on image_id. Source: https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key """ x = (((x >> 16) ^ x) * 0x045d9f3b) & 0xFFFFFFFF x = (((x >> 16) ^ x) * 0x045d9f3b) & 0xFFFFFFFF x = ((x >> 16) ^ x) & 0xFFFFFFFF return x def evalimage(net:Yolact, path:str, save_path:str=None): frame = torch.from_numpy(cv2.imread(path)).cuda().float() batch = FastBaseTransform()(frame.unsqueeze(0)) preds = net(batch) img_numpy = prep_display(preds, frame, None, None, undo_transform=False) if save_path is None: img_numpy = img_numpy[:, :, (2, 1, 0)] if save_path is None: plt.imshow(img_numpy) plt.title(path) plt.show() else: cv2.imwrite(save_path, img_numpy) def evalimages(net:Yolact, input_folder:str, output_folder:str): if not os.path.exists(output_folder): os.mkdir(output_folder) print() for p in Path(input_folder).glob('*'): path = str(p) name = os.path.basename(path) name = '.'.join(name.split('.')[:-1]) + '.png' out_path = os.path.join(output_folder, name) evalimage(net, path, out_path) print(path + ' -> ' + out_path) print('Done.') from multiprocessing.pool import ThreadPool from queue import Queue class CustomDataParallel(torch.nn.DataParallel): """ A Custom Data Parallel class that properly gathers lists of dictionaries. """ def gather(self, outputs, output_device): # Note that I don't actually want to convert everything to the output_device return sum(outputs, []) def evalvideo(net:Yolact, path:str, out_path:str=None): # If the path is a digit, parse it as a webcam index is_webcam = path.isdigit() # If the input image size is constant, this make things faster (hence why we can use it in a video setting). cudnn.benchmark = True if is_webcam: vid = cv2.VideoCapture(int(path)) else: vid = cv2.VideoCapture(path) if not vid.isOpened(): print('Could not open video "%s"' % path) exit(-1) target_fps = round(vid.get(cv2.CAP_PROP_FPS)) frame_width = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) if is_webcam: num_frames = float('inf') else: num_frames = round(vid.get(cv2.CAP_PROP_FRAME_COUNT)) net = CustomDataParallel(net).cuda() transform = torch.nn.DataParallel(FastBaseTransform()).cuda() frame_times = MovingAverage(100) fps = 0 frame_time_target = 1 / target_fps running = True fps_str = '' vid_done = False frames_displayed = 0 if out_path is not None: out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height)) def cleanup_and_exit(): print() pool.terminate() vid.release() if out_path is not None: out.release() cv2.destroyAllWindows() exit() def get_next_frame(vid): frames = [] for idx in range(args.video_multiframe): frame = vid.read()[1] if frame is None: return frames frames.append(frame) return frames def transform_frame(frames): with torch.no_grad(): frames = [torch.from_numpy(frame).cuda().float() for frame in frames] return frames, transform(torch.stack(frames, 0)) def eval_network(inp): with torch.no_grad(): frames, imgs = inp num_extra = 0 while imgs.size(0) < args.video_multiframe: imgs = torch.cat([imgs, imgs[0].unsqueeze(0)], dim=0) num_extra += 1 out = net(imgs) if num_extra > 0: out = out[:-num_extra] return frames, out def prep_frame(inp, fps_str): with torch.no_grad(): frame, preds = inp return prep_display(preds, frame, None, None, undo_transform=False, class_color=True, fps_str=fps_str) frame_buffer = Queue() video_fps = 0 # All this timing code to make sure that def play_video(): try: nonlocal frame_buffer, running, video_fps, is_webcam, num_frames, frames_displayed, vid_done video_frame_times = MovingAverage(100) frame_time_stabilizer = frame_time_target last_time = None stabilizer_step = 0.0005 progress_bar = ProgressBar(30, num_frames) while running: frame_time_start = time.time() if not frame_buffer.empty(): next_time = time.time() if last_time is not None: video_frame_times.add(next_time - last_time) video_fps = 1 / video_frame_times.get_avg() if out_path is None: cv2.imshow(path, frame_buffer.get()) else: out.write(frame_buffer.get()) frames_displayed += 1 last_time = next_time if out_path is not None: if video_frame_times.get_avg() == 0: fps = 0 else: fps = 1 / video_frame_times.get_avg() progress = frames_displayed / num_frames * 100 progress_bar.set_val(frames_displayed) print('\rProcessing Frames %s %6d / %6d (%5.2f%%) %5.2f fps ' % (repr(progress_bar), frames_displayed, num_frames, progress, fps), end='') # This is split because you don't want savevideo to require cv2 display functionality (see #197) if out_path is None and cv2.waitKey(1) == 27: # Press Escape to close running = False if not (frames_displayed < num_frames): running = False if not vid_done: buffer_size = frame_buffer.qsize() if buffer_size < args.video_multiframe: frame_time_stabilizer += stabilizer_step elif buffer_size > args.video_multiframe: frame_time_stabilizer -= stabilizer_step if frame_time_stabilizer < 0: frame_time_stabilizer = 0 new_target = frame_time_stabilizer if is_webcam else max(frame_time_stabilizer, frame_time_target) else: new_target = frame_time_target next_frame_target = max(2 * new_target - video_frame_times.get_avg(), 0) target_time = frame_time_start + next_frame_target - 0.001 # Let's just subtract a millisecond to be safe if out_path is None or args.emulate_playback: # This gives more accurate timing than if sleeping the whole amount at once while time.time() < target_time: time.sleep(0.001) else: # Let's not starve the main thread, now time.sleep(0.001) except: # See issue #197 for why this is necessary import traceback traceback.print_exc() extract_frame = lambda x, i: (x[0][i] if x[1][i]['detection'] is None else x[0][i].to(x[1][i]['detection']['box'].device), [x[1][i]]) # Prime the network on the first frame because I do some thread unsafe things otherwise print('Initializing model... ', end='') first_batch = eval_network(transform_frame(get_next_frame(vid))) print('Done.') # For each frame the sequence of functions it needs to go through to be processed (in reversed order) sequence = [prep_frame, eval_network, transform_frame] pool = ThreadPool(processes=len(sequence) + args.video_multiframe + 2) pool.apply_async(play_video) active_frames = [{'value': extract_frame(first_batch, i), 'idx': 0} for i in range(len(first_batch[0]))] print() if out_path is None: print('Press Escape to close.') try: while vid.isOpened() and running: # Hard limit on frames in buffer so we don't run out of memory >.> while frame_buffer.qsize() > 100: time.sleep(0.001) start_time = time.time() # Start loading the next frames from the disk if not vid_done: next_frames = pool.apply_async(get_next_frame, args=(vid,)) else: next_frames = None if not (vid_done and len(active_frames) == 0): # For each frame in our active processing queue, dispatch a job # for that frame using the current function in the sequence for frame in active_frames: _args = [frame['value']] if frame['idx'] == 0: _args.append(fps_str) frame['value'] = pool.apply_async(sequence[frame['idx']], args=_args) # For each frame whose job was the last in the sequence (i.e. for all final outputs) for frame in active_frames: if frame['idx'] == 0: frame_buffer.put(frame['value'].get()) # Remove the finished frames from the processing queue active_frames = [x for x in active_frames if x['idx'] > 0] # Finish evaluating every frame in the processing queue and advanced their position in the sequence for frame in list(reversed(active_frames)): frame['value'] = frame['value'].get() frame['idx'] -= 1 if frame['idx'] == 0: # Split this up into individual threads for prep_frame since it doesn't support batch size active_frames += [{'value': extract_frame(frame['value'], i), 'idx': 0} for i in range(1, len(frame['value'][0]))] frame['value'] = extract_frame(frame['value'], 0) # Finish loading in the next frames and add them to the processing queue if next_frames is not None: frames = next_frames.get() if len(frames) == 0: vid_done = True else: active_frames.append({'value': frames, 'idx': len(sequence)-1}) # Compute FPS frame_times.add(time.time() - start_time) fps = args.video_multiframe / frame_times.get_avg() else: fps = 0 fps_str = 'Processing FPS: %.2f | Video Playback FPS: %.2f | Frames in Buffer: %d' % (fps, video_fps, frame_buffer.qsize()) if not args.display_fps: print('\r' + fps_str + ' ', end='') except KeyboardInterrupt: print('\nStopping...') cleanup_and_exit() def evaluate(net:Yolact, dataset, train_mode=False): net.detect.use_fast_nms = args.fast_nms net.detect.use_cross_class_nms = args.cross_class_nms cfg.mask_proto_debug = args.mask_proto_debug # TODO Currently we do not support Fast Mask Re-scroing in evalimage, evalimages, and evalvideo if args.image is not None: if ':' in args.image: inp, out = args.image.split(':') evalimage(net, inp, out) else: evalimage(net, args.image) return elif args.images is not None: inp, out = args.images.split('E:/yolact-master/coco/images/train2017: E:/yolact-master/results/output') evalimages(net, inp, out) return elif args.video is not None: if ':' in args.video: inp, out = args.video.split(':') evalvideo(net, inp, out) else: evalvideo(net, args.video) return frame_times = MovingAverage() dataset_size = len(dataset) if args.max_images < 0 else min(args.max_images, len(dataset)) progress_bar = ProgressBar(30, dataset_size) print() if not args.display and not args.benchmark: # For each class and iou, stores tuples (score, isPositive) # Index ap_data[type][iouIdx][classIdx] ap_data = { 'box' : [[APDataObject() for _ in cfg.dataset.class_names] for _ in iou_thresholds], 'mask': [[APDataObject() for _ in cfg.dataset.class_names] for _ in iou_thresholds] } detections = Detections() else: timer.disable('Load Data') dataset_indices = list(range(len(dataset))) if args.shuffle: random.shuffle(dataset_indices) elif not args.no_sort: # Do a deterministic shuffle based on the image ids # # I do this because on python 3.5 dictionary key order is *random*, while in 3.6 it's # the order of insertion. That means on python 3.6, the images come in the order they are in # in the annotations file. For some reason, the first images in the annotations file are # the hardest. To combat this, I use a hard-coded hash function based on the image ids # to shuffle the indices we use. That way, no matter what python version or how pycocotools # handles the data, we get the same result every time. hashed = [badhash(x) for x in dataset.ids] dataset_indices.sort(key=lambda x: hashed[x]) dataset_indices = dataset_indices[:dataset_size] try: # Main eval loop for it, image_idx in enumerate(dataset_indices): timer.reset() with timer.env('Load Data'): img, gt, gt_masks, h, w, num_crowd = dataset.pull_item(image_idx) # Test flag, do not upvote if cfg.mask_proto_debug: with open('scripts/info.txt', 'w') as f: f.write(str(dataset.ids[image_idx])) np.save('scripts/gt.npy', gt_masks) batch = Variable(img.unsqueeze(0)) if args.cuda: batch = batch.cuda() with timer.env('Network Extra'): preds = net(batch) # Perform the meat of the operation here depending on our mode. if args.display: img_numpy = prep_display(preds, img, h, w) elif args.benchmark: prep_benchmark(preds, h, w) else: prep_metrics(ap_data, preds, img, gt, gt_masks, h, w, num_crowd, dataset.ids[image_idx], detections) # First couple of images take longer because we're constructing the graph. # Since that's technically initialization, don't include those in the FPS calculations. if it > 1: frame_times.add(timer.total_time()) if args.display: if it > 1: print('Avg FPS: %.4f' % (1 / frame_times.get_avg())) plt.imshow(img_numpy) plt.title(str(dataset.ids[image_idx])) plt.show() elif not args.no_bar: if it > 1: fps = 1 / frame_times.get_avg() else: fps = 0 progress = (it+1) / dataset_size * 100 progress_bar.set_val(it+1) print('\rProcessing Images %s %6d / %6d (%5.2f%%) %5.2f fps ' % (repr(progress_bar), it+1, dataset_size, progress, fps), end='') if not args.display and not args.benchmark: print() if args.output_coco_json: print('Dumping detections...') if args.output_web_json: detections.dump_web() else: detections.dump() else: if not train_mode: print('Saving data...') with open(args.ap_data_file, 'wb') as f: pickle.dump(ap_data, f) return calc_map(ap_data) elif args.benchmark: print() print() print('Stats for the last frame:') timer.print_stats() avg_seconds = frame_times.get_avg() print('Average: %5.2f fps, %5.2f ms' % (1 / frame_times.get_avg(), 1000*avg_seconds)) except KeyboardInterrupt: print('Stopping...') def calc_map(ap_data): print('Calculating mAP...') aps = [{'box': [], 'mask': []} for _ in iou_thresholds] for _class in range(len(cfg.dataset.class_names)): for iou_idx in range(len(iou_thresholds)): for iou_type in ('box', 'mask'): ap_obj = ap_data[iou_type][iou_idx][_class] if not ap_obj.is_empty(): aps[iou_idx][iou_type].append(ap_obj.get_ap()) all_maps = {'box': OrderedDict(), 'mask': OrderedDict()} # Looking back at it, this code is really hard to read :/ for iou_type in ('box', 'mask'): all_maps[iou_type]['all'] = 0 # Make this first in the ordereddict for i, threshold in enumerate(iou_thresholds): mAP = sum(aps[i][iou_type]) / len(aps[i][iou_type]) * 100 if len(aps[i][iou_type]) > 0 else 0 all_maps[iou_type][int(threshold*100)] = mAP all_maps[iou_type]['all'] = (sum(all_maps[iou_type].values()) / (len(all_maps[iou_type].values())-1)) print_maps(all_maps) # Put in a prettier format so we can serialize it to json during training all_maps = {k: {j: round(u, 2) for j, u in v.items()} for k, v in all_maps.items()} return all_maps def print_maps(all_maps): # Warning: hacky make_row = lambda vals: (' %5s |' * len(vals)) % tuple(vals) make_sep = lambda n: ('-------+' * n) print() print(make_row([''] + [('.%d ' % x if isinstance(x, int) else x + ' ') for x in all_maps['box'].keys()])) print(make_sep(len(all_maps['box']) + 1)) for iou_type in ('box', 'mask'): print(make_row([iou_type] + ['%.2f' % x if x < 100 else '%.1f' % x for x in all_maps[iou_type].values()])) print(make_sep(len(all_maps['box']) + 1)) print() if __name__ == '__main__': parse_args() if args.config is not None: set_cfg(args.config) if args.trained_model == 'interrupt': args.trained_model = SavePath.get_interrupt('weights/') elif args.trained_model == 'latest': args.trained_model = SavePath.get_latest('weights/', cfg.name) if args.config is None: model_path = SavePath.from_str(args.trained_model) # TODO: Bad practice? Probably want to do a name lookup instead. args.config = model_path.model_name + '_config' print('Config not specified. Parsed %s from the file name.\n' % args.config) set_cfg(args.config) if args.detect: cfg.eval_mask_branch = False if args.dataset is not None: set_dataset(args.dataset) with torch.no_grad(): if not os.path.exists('results'): os.makedirs('results') if args.cuda: cudnn.fastest = True torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') if args.resume and not args.display: with open(args.ap_data_file, 'rb') as f: ap_data = pickle.load(f) calc_map(ap_data) exit() if args.image is None and args.video is None and args.images is None: dataset = COCODetection(cfg.dataset.valid_images, cfg.dataset.valid_info, transform=BaseTransform(), has_gt=cfg.dataset.has_gt) prep_coco_cats() else: dataset = None print('Loading model...', end='') net = Yolact() net.load_weights(args.trained_model) net.eval() print(' Done.') if args.cuda: net = net.cuda() evaluate(net, dataset) Traceback (most recent call last): File "eval.py", line 1105, in <module> evaluate(net, dataset) File "eval.py", line 884, in evaluate inp, out = args.images.split('E:/yolact-master/coco/images/train2017: E:/yolact-master/results/output') ValueError: not enough values to unpack (expected 2, got 1)
06-18
标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值