一、数据库DB
REDIS是一款内存型数据库,那么数据的最终处理是如何处理的呢,前面提到了数据的挺久化,那么持久化的什么内容,其实就是数据的处理过程。也就是说,持久化的数据也就是Redis需要操作的数据,这些数据才是它真正有用的部分,前面提到的一切一切,甚至以后再提到的一切一切,其实都是为这些数据服务的,保证这些数据的安全、高效和稳定。
REDIS的所有数据都存储在redisDb这个数据结构体中,它在server.h文件中,即:
typedef struct redisDb {
dict *dict; /* The keyspace for this DB */
dict *expires; /* Timeout of keys with a timeout set */
dict *blocking_keys; /* Keys with clients waiting for data (BLPOP)*/
dict *ready_keys; /* Blocked keys that received a PUSH */
dict *watched_keys; /* WATCHED keys for MULTI/EXEC CAS */
int id; /* Database ID */
long long avg_ttl; /* Average TTL, just for stats */
unsigned long expires_cursor; /* Cursor of the active expire cycle. */
list *defrag_later; /* List of key names to attempt to defrag one by one, gradually. */
} redisDb;
struct redisServer {
/* General */
pid_t pid; /* Main process pid. */
char *configfile; /* Absolute config file path, or NULL */
......
redisDb *db;
......
}
而整个REDIS其实就是这个数组结构体对象的一个动态数组。这个数据结构体在前面也接触过,今天开始正式对它进行分析.通过上面的数据结构体就可以整理整个REDIS的数据结构的构成方式了:
redisServer包含指定个redisDb,而它本身又是键值对dict的数组指针,而dict又是dictht的指针数组,最终指向dictEntry,它包含最终的由前面提到的SDS等,而list,sds,zset等又统一由RedisObject来管理。也即是:
一个数据库服务redisServer,含指定个redisDb数据库,每个数据库由dict字典组成,字典的KEY和VALUE都是RedisObject(根据实际情况创建SDS,LIST等)。
但整体数据的存储是在db.c这个文件,所以基本是围绕这个文件展开分析的。
二、源码分析
数据库常见的功能有哪些,“CRUD”增删改查,这是最基础的几个命令,其它还有数据库切换、各种定期删除、策略等等,下面看一下主要的源码:
1、选择数据库,查找
//指定哪个数据库,然后开始工作
int selectDb(client *c, int id) {
if (id < 0 || id >= server.dbnum)
return C_ERR;
c->db = &server.db[id];
return C_OK;
}
/* Low level key lookup API, not actually called directly from commands
* implementations that should instead rely on lookupKeyRead(),
* lookupKeyWrite() and lookupKeyReadWithFlags(). */
//一个标准的底层调用查找函数,其它如lookupKeyReadWithFlags都调用其来实现
//数据库中取指定键值的对象,不存在返回NULL
robj *lookupKey(redisDb *db, robj *key, int flags) {
//在字典中查找
dictEntry *de = dictFind(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
/* Update the access time for the ageing algorithm.
* Don't do it if we have a saving child, as this will trigger
* a copy on write madness. */
//检查是否重复操作,防止IO密集引起效率下降
if (!hasActiveChildProcess() && !(flags & LOOKUP_NOTOUCH)){
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
updateLFU(val);
} else {
val->lru = LRU_CLOCK();
}
}
return val;
} else {
return NULL;
}
}
/* Lookup a key for read operations, or return NULL if the key is not found
* in the specified DB.
*
* As a side effect of calling this function:
* 1. A key gets expired if it reached it's TTL.
* 2. The key last access time is updated.
* 3. The global keys hits/misses stats are updated (reported in INFO).
* 4. If keyspace notifications are enabled, a "keymiss" notification is fired.
*
* This API should not be used when we write to the key after obtaining
* the object linked to the key, but only for read only operations.
*
* Flags change the behavior of this command:
*
* LOOKUP_NONE (or zero): no special flags are passed.
* LOOKUP_NOTOUCH: don't alter the last access time of the key.
*
* Note: this function also returns NULL if the key is logically expired
* but still existing, in case this is a slave, since this API is called only
* for read operations. Even if the key expiry is master-driven, we can
* correctly report a key is expired on slaves even if the master is lagging
* expiring our key via DELs in the replication link. */
robj *lookupKeyReadWithFlags(redisDb *db, robj *key, int flags) {
robj *val;
if (expireIfNeeded(db,key) == 1) {
/* Key expired. If we are in the context of a master, expireIfNeeded()
* returns 0 only when the key does not exist at all, so it's safe
* to return NULL ASAP. */
if (server.masterhost == NULL) {
server.stat_keyspace_misses++;
notifyKeyspaceEvent(NOTIFY_KEY_MISS, "keymiss", key, db->id);
return NULL;
}
/* However if we are in the context of a slave, expireIfNeeded() will
* not really try to expire the key, it only returns information
* about the "logical" status of the key: key expiring is up to the
* master in order to have a consistent view of master's data set.
*
* However, if the command caller is not the master, and as additional
* safety measure, the command invoked is a read-only command, we can
* safely return NULL here, and provide a more consistent behavior
* to clients accessign expired values in a read-only fashion, that
* will say the key as non existing.
*
* Notably this covers GETs when slaves are used to scale reads. */
if (server.current_client &&
server.current_client != server.master &&
server.current_client->cmd &&
server.current_client->cmd->flags & CMD_READONLY)
{
server.stat_keyspace_misses++;
notifyKeyspaceEvent(NOTIFY_KEY_MISS, "keymiss", key, db->id);
return NULL;
}
}
val = lookupKey(db,key,flags);
if (val == NULL) {
server.stat_keyspace_misses++;
notifyKeyspaceEvent(NOTIFY_KEY_MISS, "keymiss", key, db->id);
}
else
server.stat_keyspace_hits++;
return val;
}
/* Like lookupKeyReadWithFlags(), but does not use any flag, which is the
* common case. */
robj *lookupKeyRead(redisDb *db, robj *key) {
return lookupKeyReadWithFlags(db,key,LOOKUP_NONE);
}
/* Lookup a key for write operations, and as a side effect, if needed, expires
* the key if its TTL is reached.
*
* Returns the linked value object if the key exists or NULL if the key
* does not exist in the specified DB. */
robj *lookupKeyWriteWithFlags(redisDb *db, robj *key, int flags) {
expireIfNeeded(db,key);
return lookupKey(db,key,flags);
}
robj *lookupKeyWrite(redisDb *db, robj *key) {
return lookupKeyWriteWithFlags(db, key, LOOKUP_NONE);
}
robj *lookupKeyReadOrReply(client *c, robj *key, robj *reply) {
robj *o = lookupKeyRead(c->db, key);
if (!o) addReply(c,reply);
return o;
}
robj *lookupKeyWriteOrReply(client *c, robj *key, robj *reply) {
robj *o = lookupKeyWrite(c->db, key);
if (!o) addReply(c,reply);
return o;
}
其实就是第一个函数是实在的干活的,其它都是加了各种辅助和限制条件,比如有的写,有的读,有的删除TTL,有的返回对象操作的回复等等。
2、增加
增加也类似:
/* Add the key to the DB. It's up to the caller to increment the reference
* counter of the value if needed.
*
* The program is aborted if the key already exists. */
void dbAdd(redisDb *db, robj *key, robj *val) {
sds copy = sdsdup(key->ptr);
int retval = dictAdd(db->dict, copy, val);
serverAssertWithInfo(NULL,key,retval == DICT_OK);
if (val->type == OBJ_LIST ||
val->type == OBJ_ZSET)
signalKeyAsReady(db, key);
if (server.cluster_enabled) slotToKeyAdd(key);
}
/* Return a random key, in form of a Redis object.
* If there are no keys, NULL is returned.
*
* The function makes sure to return keys not already expired. */
robj *dbRandomKey(redisDb *db) {
dictEntry *de;
int maxtries = 100;
int allvolatile = dictSize(db->dict) == dictSize(db->expires);
while(1) {
sds key;
robj *keyobj;
de = dictGetFairRandomKey(db->dict);
if (de == NULL) return NULL;
key = dictGetKey(de);
//这就是前面提到的,创建使用了一层隔离,增加了RedisObject
keyobj = createStringObject(key,sdslen(key));
if (dictFind(db->expires,key)) {
if (allvolatile && server.masterhost && --maxtries == 0) {
/* If the DB is composed only of keys with an expire set,
* it could happen that all the keys are already logically
* expired in the slave, so the function cannot stop because
* expireIfNeeded() is false, nor it can stop because
* dictGetRandomKey() returns NULL (there are keys to return).
* To prevent the infinite loop we do some tries, but if there
* are the conditions for an infinite loop, eventually we
* return a key name that may be already expired. */
return keyobj;
}
if (expireIfNeeded(db,keyobj)) {
decrRefCount(keyobj);
continue; /* search for another key. This expired. */
}
}
return keyobj;
}
}
简单看一下dictAdd这个函数:
int dictAdd(dict *d, void *key, void *val)
{
dictEntry *entry = dictAddRaw(d,key,NULL);
if (!entry) return DICT_ERR;
dictSetVal(d, entry, val);
return DICT_OK;
}
回到了对字典的增加,其实最后就是指针操作。包括是否要进行Rehash等等的操作,这些在前面都分析过了,现在是不是可以关联起来了。
3、修改
修改和增加区别没啥,只不过一个要原生出来,一个需要找一下当前的,然后改一下值就可以了。
/* Overwrite an existing key with a new value. Incrementing the reference
* count of the new value is up to the caller.
* This function does not modify the expire time of the existing key.
*
* The program is aborted if the key was not already present. */
void dbOverwrite(redisDb *db, robj *key, robj *val) {
dictEntry *de = dictFind(db->dict,key->ptr);
serverAssertWithInfo(NULL,key,de != NULL);
dictEntry auxentry = *de;
robj *old = dictGetVal(de);
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
val->lru = old->lru;
}
dictSetVal(db->dict, de, val);
if (server.lazyfree_lazy_server_del) {
freeObjAsync(old);
dictSetVal(db->dict, &auxentry, NULL);
}
dictFreeVal(db->dict, &auxentry);
}
/* High level Set operation. This function can be used in order to set
* a key, whatever it was existing or not, to a new object.
*
* 1) The ref count of the value object is incremented.
* 2) clients WATCHing for the destination key notified.
* 3) The expire time of the key is reset (the key is made persistent).
*
* All the new keys in the database should be created via this interface. */
void setKey(redisDb *db, robj *key, robj *val) {
if (lookupKeyWrite(db,key) == NULL) {
dbAdd(db,key,val);
} else {
dbOverwrite(db,key,val);
}
incrRefCount(val);
removeExpire(db,key);
signalModifiedKey(db,key);
}
int dbExists(redisDb *db, robj *key) {
return dictFind(db->dict,key->ptr) != NULL;
}
修改对照增加就可以了。
4、删除
/* Delete a key, value, and associated expiration entry if any, from the DB */
int dbSyncDelete(redisDb *db, robj *key) {
/* Deleting an entry from the expires dict will not free the sds of
* the key, because it is shared with the main dictionary. */
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
if (dictDelete(db->dict,key->ptr) == DICT_OK) {
if (server.cluster_enabled) slotToKeyDel(key);
return 1;
} else {
return 0;
}
}
/* This is a wrapper whose behavior depends on the Redis lazy free
* configuration. Deletes the key synchronously or asynchronously. */
int dbDelete(redisDb *db, robj *key) {
return server.lazyfree_lazy_server_del ? dbAsyncDelete(db,key) :
dbSyncDelete(db,key);
}
/* Remove all keys from all the databases in a Redis server.
* If callback is given the function is called from time to time to
* signal that work is in progress.
*
* The dbnum can be -1 if all the DBs should be flushed, or the specified
* DB number if we want to flush only a single Redis database number.
*
* Flags are be EMPTYDB_NO_FLAGS if no special flags are specified or
* EMPTYDB_ASYNC if we want the memory to be freed in a different thread
* and the function to return ASAP.
*
* On success the fuction returns the number of keys removed from the
* database(s). Otherwise -1 is returned in the specific case the
* DB number is out of range, and errno is set to EINVAL. */
long long emptyDbGeneric(redisDb *dbarray, int dbnum, int flags, void(callback)(void*)) {
int async = (flags & EMPTYDB_ASYNC);
long long removed = 0;
if (dbnum < -1 || dbnum >= server.dbnum) {
errno = EINVAL;
return -1;
}
/* Fire the flushdb modules event. */
RedisModuleFlushInfoV1 fi = {REDISMODULE_FLUSHINFO_VERSION,!async,dbnum};
moduleFireServerEvent(REDISMODULE_EVENT_FLUSHDB,
REDISMODULE_SUBEVENT_FLUSHDB_START,
&fi);
/* Make sure the WATCHed keys are affected by the FLUSH* commands.
* Note that we need to call the function while the keys are still
* there. */
signalFlushedDb(dbnum);
int startdb, enddb;
if (dbnum == -1) {
startdb = 0;
enddb = server.dbnum-1;
} else {
startdb = enddb = dbnum;
}
for (int j = startdb; j <= enddb; j++) {
removed += dictSize(dbarray[j].dict);
if (async) {
emptyDbAsync(&dbarray[j]);
} else {
dictEmpty(dbarray[j].dict,callback);
dictEmpty(dbarray[j].expires,callback);
}
}
if (server.cluster_enabled) {
if (async) {
slotToKeyFlushAsync();
} else {
slotToKeyFlush();
}
}
if (dbnum == -1) flushSlaveKeysWithExpireList();
/* Also fire the end event. Note that this event will fire almost
* immediately after the start event if the flush is asynchronous. */
moduleFireServerEvent(REDISMODULE_EVENT_FLUSHDB,
REDISMODULE_SUBEVENT_FLUSHDB_END,
&fi);
return removed;
}
long long emptyDb(int dbnum, int flags, void(callback)(void*)) {
return emptyDbGeneric(server.db, dbnum, flags, callback);
}
删除其实也比较好理解,除了精准删除还有整库整库的删除。
5、时间过期处理
过期时间处理其实主要就是三个,删除过期,设置过期,查询过期,
int removeExpire(redisDb *db, robj *key) {
/* An expire may only be removed if there is a corresponding entry in the
* main dict. Otherwise, the key will never be freed. */
serverAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL);
return dictDelete(db->expires,key->ptr) == DICT_OK;
}
/* Set an expire to the specified key. If the expire is set in the context
* of an user calling a command 'c' is the client, otherwise 'c' is set
* to NULL. The 'when' parameter is the absolute unix time in milliseconds
* after which the key will no longer be considered valid. */
void setExpire(client *c, redisDb *db, robj *key, long long when) {
dictEntry *kde, *de;
/* Reuse the sds from the main dict in the expire dict */
kde = dictFind(db->dict,key->ptr);
serverAssertWithInfo(NULL,key,kde != NULL);
de = dictAddOrFind(db->expires,dictGetKey(kde));
dictSetSignedIntegerVal(de,when);
int writable_slave = server.masterhost && server.repl_slave_ro == 0;
if (c && writable_slave && !(c->flags & CLIENT_MASTER))
rememberSlaveKeyWithExpire(db,key);
}
/* Return the expire time of the specified key, or -1 if no expire
* is associated with this key (i.e. the key is non volatile) */
long long getExpire(redisDb *db, robj *key) {
dictEntry *de;
/* No expire? return ASAP */
if (dictSize(db->expires) == 0 ||
(de = dictFind(db->expires,key->ptr)) == NULL) return -1;
/* The entry was found in the expire dict, this means it should also
* be present in the main dict (safety check). */
serverAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL);
return dictGetSignedIntegerVal(de);
}
/* Propagate expires into slaves and the AOF file.
* When a key expires in the master, a DEL operation for this key is sent
* to all the slaves and the AOF file if enabled.
*
* This way the key expiry is centralized in one place, and since both
* AOF and the master->slave link guarantee operation ordering, everything
* will be consistent even if we allow write operations against expiring
* keys. */
void propagateExpire(redisDb *db, robj *key, int lazy) {
robj *argv[2];
argv[0] = lazy ? shared.unlink : shared.del;
argv[1] = key;
incrRefCount(argv[0]);
incrRefCount(argv[1]);
if (server.aof_state != AOF_OFF)
feedAppendOnlyFile(server.delCommand,db->id,argv,2);
replicationFeedSlaves(server.slaves,db->id,argv,2);
decrRefCount(argv[0]);
decrRefCount(argv[1]);
}
6、过期策略处理
在REDIS中,过期有三种策略,即定时删除,惰性删除也就是前面看到的访问时判断是否TTL过期删除,另外一个就是定期删除。第一种和第三种方式雷同,只不过前者使用策略覆盖自己,后者是全覆盖。
/* Check if the key is expired. */
int keyIsExpired(redisDb *db, robj *key) {
mstime_t when = getExpire(db,key);
mstime_t now;
if (when < 0) return 0; /* No expire for this key */
/* Don't expire anything while loading. It will be done later. */
if (server.loading) return 0;
/* If we are in the context of a Lua script, we pretend that time is
* blocked to when the Lua script started. This way a key can expire
* only the first time it is accessed and not in the middle of the
* script execution, making propagation to slaves / AOF consistent.
* See issue #1525 on Github for more information. */
if (server.lua_caller) {
now = server.lua_time_start;
}
/* If we are in the middle of a command execution, we still want to use
* a reference time that does not change: in that case we just use the
* cached time, that we update before each call in the call() function.
* This way we avoid that commands such as RPOPLPUSH or similar, that
* may re-open the same key multiple times, can invalidate an already
* open object in a next call, if the next call will see the key expired,
* while the first did not. */
else if (server.fixed_time_expire > 0) {
now = server.mstime;
}
/* For the other cases, we want to use the most fresh time we have. */
else {
now = mstime();
}
/* The key expired if the current (virtual or real) time is greater
* than the expire time of the key. */
return now > when;
}
/* This function is called when we are going to perform some operation
* in a given key, but such key may be already logically expired even if
* it still exists in the database. The main way this function is called
* is via lookupKey*() family of functions.
*
* The behavior of the function depends on the replication role of the
* instance, because slave instances do not expire keys, they wait
* for DELs from the master for consistency matters. However even
* slaves will try to have a coherent return value for the function,
* so that read commands executed in the slave side will be able to
* behave like if the key is expired even if still present (because the
* master has yet to propagate the DEL).
*
* In masters as a side effect of finding a key which is expired, such
* key will be evicted from the database. Also this may trigger the
* propagation of a DEL/UNLINK command in AOF / replication stream.
*
* The return value of the function is 0 if the key is still valid,
* otherwise the function returns 1 if the key is expired. */
int expireIfNeeded(redisDb *db, robj *key) {
if (!keyIsExpired(db,key)) return 0;
/* If we are running in the context of a slave, instead of
* evicting the expired key from the database, we return ASAP:
* the slave key expiration is controlled by the master that will
* send us synthesized DEL operations for expired keys.
*
* Still we try to return the right information to the caller,
* that is, 0 if we think the key should be still valid, 1 if
* we think the key is expired at this time. */
if (server.masterhost != NULL) return 1;
/* Delete the key */
server.stat_expiredkeys++;
propagateExpire(db,key,server.lazyfree_lazy_expire);
notifyKeyspaceEvent(NOTIFY_EXPIRED,
"expired",key,db->id);
return server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :
dbSyncDelete(db,key);
}
过期处理的具体函数在expire.c这个文件中:
void activeExpireCycle(int type) {
/* Adjust the running parameters according to the configured expire
* effort. The default effort is 1, and the maximum configurable effort
* is 10. */
unsigned long
effort = server.active_expire_effort-1, /* Rescale from 0 to 9. */
config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP +
ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4*effort,
config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION +
ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort,
config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC +
2*effort,
config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE-
effort;
/* This function has some global state in order to continue the work
* incrementally across calls. */
static unsigned int current_db = 0; /* Last DB tested. */
static int timelimit_exit = 0; /* Time limit hit in previous call? */
static long long last_fast_cycle = 0; /* When last fast cycle ran. */
int j, iteration = 0;
int dbs_per_call = CRON_DBS_PER_CALL;
long long start = ustime(), timelimit, elapsed;
/* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (clientsArePaused()) return;
if (type == ACTIVE_EXPIRE_CYCLE_FAST) {
/* Don't start a fast cycle if the previous cycle did not exit
* for time limit, unless the percentage of estimated stale keys is
* too high. Also never repeat a fast cycle for the same period
* as the fast cycle total duration itself. */
if (!timelimit_exit &&
server.stat_expired_stale_perc < config_cycle_acceptable_stale)
return;
if (start < last_fast_cycle + (long long)config_cycle_fast_duration*2)
return;
last_fast_cycle = start;
}
/* We usually should test CRON_DBS_PER_CALL per iteration, with
* two exceptions:
*
* 1) Don't test more DBs than we have.
* 2) If last time we hit the time limit, we want to scan all DBs
* in this iteration, as there is work to do in some DB and we don't want
* expired keys to use memory for too much time. */
if (dbs_per_call > server.dbnum || timelimit_exit)
dbs_per_call = server.dbnum;
/* We can use at max 'config_cycle_slow_time_perc' percentage of CPU
* time per iteration. Since this function gets called with a frequency of
* server.hz times per second, the following is the max amount of
* microseconds we can spend in this function. */
timelimit = config_cycle_slow_time_perc*1000000/server.hz/100;
timelimit_exit = 0;
if (timelimit <= 0) timelimit = 1;
if (type == ACTIVE_EXPIRE_CYCLE_FAST)
timelimit = config_cycle_fast_duration; /* in microseconds. */
/* Accumulate some global stats as we expire keys, to have some idea
* about the number of keys that are already logically expired, but still
* existing inside the database. */
long total_sampled = 0;
long total_expired = 0;
for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {
/* Expired and checked in a single loop. */
unsigned long expired, sampled;
redisDb *db = server.db+(current_db % server.dbnum);
/* Increment the DB now so we are sure if we run out of time
* in the current DB we'll restart from the next. This allows to
* distribute the time evenly across DBs. */
current_db++;
/* Continue to expire if at the end of the cycle more than 25%
* of the keys were expired. */
do {
unsigned long num, slots;
long long now, ttl_sum;
int ttl_samples;
iteration++;
/* If there is nothing to expire try next DB ASAP. */
if ((num = dictSize(db->expires)) == 0) {
db->avg_ttl = 0;
break;
}
slots = dictSlots(db->expires);
now = mstime();
/* When there are less than 1% filled slots, sampling the key
* space is expensive, so stop here waiting for better times...
* The dictionary will be resized asap. */
if (num && slots > DICT_HT_INITIAL_SIZE &&
(num*100/slots < 1)) break;
/* The main collection cycle. Sample random keys among keys
* with an expire set, checking for expired ones. */
expired = 0;
sampled = 0;
ttl_sum = 0;
ttl_samples = 0;
if (num > config_keys_per_loop)
num = config_keys_per_loop;
/* Here we access the low level representation of the hash table
* for speed concerns: this makes this code coupled with dict.c,
* but it hardly changed in ten years.
*
* Note that certain places of the hash table may be empty,
* so we want also a stop condition about the number of
* buckets that we scanned. However scanning for free buckets
* is very fast: we are in the cache line scanning a sequential
* array of NULL pointers, so we can scan a lot more buckets
* than keys in the same time. */
long max_buckets = num*20;
long checked_buckets = 0;
while (sampled < num && checked_buckets < max_buckets) {
for (int table = 0; table < 2; table++) {
if (table == 1 && !dictIsRehashing(db->expires)) break;
unsigned long idx = db->expires_cursor;
idx &= db->expires->ht[table].sizemask;
dictEntry *de = db->expires->ht[table].table[idx];
long long ttl;
/* Scan the current bucket of the current table. */
checked_buckets++;
while(de) {
/* Get the next entry now since this entry may get
* deleted. */
dictEntry *e = de;
de = de->next;
ttl = dictGetSignedIntegerVal(e)-now;
if (activeExpireCycleTryExpire(db,e,now)) expired++;
if (ttl > 0) {
/* We want the average TTL of keys yet
* not expired. */
ttl_sum += ttl;
ttl_samples++;
}
sampled++;
}
}
db->expires_cursor++;
}
total_expired += expired;
total_sampled += sampled;
/* Update the average TTL stats for this database. */
if (ttl_samples) {
long long avg_ttl = ttl_sum/ttl_samples;
/* Do a simple running average with a few samples.
* We just use the current estimate with a weight of 2%
* and the previous estimate with a weight of 98%. */
if (db->avg_ttl == 0) db->avg_ttl = avg_ttl;
db->avg_ttl = (db->avg_ttl/50)*49 + (avg_ttl/50);
}
/* We can't block forever here even if there are many keys to
* expire. So after a given amount of milliseconds return to the
* caller waiting for the other active expire cycle. */
if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
elapsed = ustime()-start;
if (elapsed > timelimit) {
timelimit_exit = 1;
server.stat_expired_time_cap_reached_count++;
break;
}
}
/* We don't repeat the cycle for the current database if there are
* an acceptable amount of stale keys (logically expired but yet
* not reclained). */
} while ((expired*100/sampled) > config_cycle_acceptable_stale);
}
elapsed = ustime()-start;
server.stat_expire_cycle_time_used += elapsed;
latencyAddSampleIfNeeded("expire-cycle",elapsed/1000);
/* Update our estimate of keys existing but yet to be expired.
* Running average with this sample accounting for 5%. */
double current_perc;
if (total_sampled) {
current_perc = (double)total_expired/total_sampled;
} else
current_perc = 0;
server.stat_expired_stale_perc = (current_perc*0.05)+
(server.stat_expired_stale_perc*0.95);
}
7、命令处理函数
另外,在db.c中还有大量的命令处理函数,只举几个例子:
void renameGenericCommand(client *c, int nx) {
robj *o;
long long expire;
int samekey = 0;
/* When source and dest key is the same, no operation is performed,
* if the key exists, however we still return an error on unexisting key. */
if (sdscmp(c->argv[1]->ptr,c->argv[2]->ptr) == 0) samekey = 1;
if ((o = lookupKeyWriteOrReply(c,c->argv[1],shared.nokeyerr)) == NULL)
return;
if (samekey) {
addReply(c,nx ? shared.czero : shared.ok);
return;
}
incrRefCount(o);
expire = getExpire(c->db,c->argv[1]);
if (lookupKeyWrite(c->db,c->argv[2]) != NULL) {
if (nx) {
decrRefCount(o);
addReply(c,shared.czero);
return;
}
/* Overwrite: delete the old key before creating the new one
* with the same name. */
dbDelete(c->db,c->argv[2]);
}
dbAdd(c->db,c->argv[2],o);
if (expire != -1) setExpire(c,c->db,c->argv[2],expire);
dbDelete(c->db,c->argv[1]);
signalModifiedKey(c->db,c->argv[1]);
signalModifiedKey(c->db,c->argv[2]);
notifyKeyspaceEvent(NOTIFY_GENERIC,"rename_from",
c->argv[1],c->db->id);
notifyKeyspaceEvent(NOTIFY_GENERIC,"rename_to",
c->argv[2],c->db->id);
server.dirty++;
addReply(c,nx ? shared.cone : shared.ok);
}
void renameCommand(client *c) {
renameGenericCommand(c,0);
}
void renamenxCommand(client *c) {
renameGenericCommand(c,1);
}
void moveCommand(client *c) {
robj *o;
redisDb *src, *dst;
int srcid;
long long dbid, expire;
if (server.cluster_enabled) {
addReplyError(c,"MOVE is not allowed in cluster mode");
return;
}
/* Obtain source and target DB pointers */
src = c->db;
srcid = c->db->id;
if (getLongLongFromObject(c->argv[2],&dbid) == C_ERR ||
dbid < INT_MIN || dbid > INT_MAX ||
selectDb(c,dbid) == C_ERR)
{
addReply(c,shared.outofrangeerr);
return;
}
dst = c->db;
selectDb(c,srcid); /* Back to the source DB */
/* If the user is moving using as target the same
* DB as the source DB it is probably an error. */
if (src == dst) {
addReply(c,shared.sameobjecterr);
return;
}
/* Check if the element exists and get a reference */
o = lookupKeyWrite(c->db,c->argv[1]);
if (!o) {
addReply(c,shared.czero);
return;
}
expire = getExpire(c->db,c->argv[1]);
/* Return zero if the key already exists in the target DB */
if (lookupKeyWrite(dst,c->argv[1]) != NULL) {
addReply(c,shared.czero);
return;
}
dbAdd(dst,c->argv[1],o);
if (expire != -1) setExpire(c,dst,c->argv[1],expire);
incrRefCount(o);
/* OK! key moved, free the entry in the source DB */
dbDelete(src,c->argv[1]);
signalModifiedKey(src,c->argv[1]);
signalModifiedKey(dst,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_GENERIC,
"move_from",c->argv[1],src->id);
notifyKeyspaceEvent(NOTIFY_GENERIC,
"move_to",c->argv[1],dst->id);
server.dirty++;
addReply(c,shared.cone);
}
从代码中可以看到,如果深入数据修改处理,就会调用相关的字典操作和具体的robj对象进行操作,如果对DB操作,则要进行相关的参数调整配置即可。
三、总结
其实对于新手来说,看这么多确实挺复杂,不过如果自己尝试着写一个简单的内存池,你就会明白过来,REDIS其实你就可以理解成一个大的内存池,只不过增加很多的辅助功能,保障这个池子内存应用的合理以及分布式应用的安全等等。等明白了这一点,就会发现,内存池就变成了内存型数据库。当然,这样说只是对于初学者的一个基本情况的展示,它是不准确的。
分析到这里,应该是核心的主流程就分析的基本完成了,但是仍然还有许多重要的辅助部分会在接下来逐一分析。因为疫情,困在帝都,源码分析就停了下来,趁着春节休息,赶紧把它剩下的部分搞定。

本文深入分析了 Redis 内存数据库的内部结构,重点讨论了 redisDb 结构体及其在 server 中的角色,以及数据的持久化、查找、增加、修改和删除操作。还介绍了过期策略处理,包括定时删除、惰性删除和定期删除。最后,文章探讨了数据库命令处理函数,如 RENAME 和 MOVE 命令的实现。通过对源码的解析,揭示了 Redis 的数据处理流程和数据库管理机制。
2847

被折叠的 条评论
为什么被折叠?



