Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode *root) {
}
};
相关知识点:前序+中序 or 中序+后序 确定一棵树
这里直接使用递归方法来确定
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isSymmetric(TreeNode *root) {
return root?isSymmetric_2(root->left,root->right):true;
}
private:
bool isSymmetric_2(TreeNode *left,TreeNode *right);
};
bool Solution::isSymmetric_2(TreeNode *left,TreeNode *right){
if (!left&&!right) return true;
if (!left||!right) return false;
return left->val==right->val
&&isSymmetric_2(left->left,right->right)
&&isSymmetric_2(left->right,right->left);
}