待整理

本文介绍了内容安全策略(CSP)的基本概念及其在防御跨站脚本(XSS)等攻击中的作用,并给出了不同中间件数量下koa应用的性能测试结果。

<metahttp-equiv="Content-Security-Policy"content="default-src 'self'; img-src https://*; child-src 'none';">内容安全策略 (CSP) 是一个额外的安全层,用于检测并削弱某些特定类型的攻击,包括跨站脚本 (XSS) 和数据注入攻击等。无论是数据盗取、网站内容污染还是散发恶意软件,这些攻击都是主要的手段。


https://developer.mozilla.org/zh-CN/docs/Web/Security/CSP/Using_Content_Security_Policy



From: https://github.com/guo-yu/koa-guide

性能(Benchmarks)

挂载不同数量的中间件,wrk 得出 benchmarks 如下:

1 middleware
8367.03

5 middleware
8074.10

10 middleware
7526.55

15 middleware
7399.92

20 middleware
7055.33

30 middleware
6460.17

50 middleware
5671.98

100 middleware
4349.37

一般来说,我们通常要使用约50个中间件,按这个标准计算,单应用可支持 340,260 请求/分钟,即 20,415,600 请求/小时,也就是约 4.4 亿 请求/天。


内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值