hdu-6055-Regular polygon

本文介绍了一种高效算法,用于计算平面上给定点集可以构成的不同正方形数量。该算法利用数学公式推导未知顶点,并采用二分查找提高搜索效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目链接

Regular polygon

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 408    Accepted Submission(s): 164


Problem Description
On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
 

Input
The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
 

Output
For each case, output a number means how many different regular polygon these points can make.
 

Sample Input
  
4 0 0 0 1 1 0 1 1 6 0 0 0 1 1 0 1 1 2 0 2 1
 

Sample Output
  
1 2
 
思路:

 

大致题意:

有一堆平面散点集,任取四个点,求能组成正方形的不同组合方式有多少。

相同的四个点,不同顺序构成的正方形视为同一正方形


解题思路:

做本题数学功底要很强= =

 

直接四个点四个点地枚举肯定超时的,不可取。

普遍的做法是:先枚举两个点,通过数学公式得到另外2个点,使得这四个点能够成正方形。然后检查散点集中是否存在计算出来的那两个点,若存在,说明有一个正方形。

但这种做法会使同一个正方形按照不同的顺序被枚举了四次,因此最后的结果要除以4.

 

已知: (x1,y1)  (x2,y2)

则:   x3=x1+(y1-y2)   y3= y1-(x1-x2)

x4=x2+(y1-y2)   y4= y2-(x1-x2)

x3=x1-(y1-y2)   y3= y1+(x1-x2)

x4=x2-(y1-y2)   y4= y2+(x1-x2)

 





剩下的证明略



代码:
#include<bits/stdc++.h>
#define maxn 510
using namespace std;
struct coord
{
    int x,y;
    bool operator<(const coord& rhs)const
    {
        if(x == rhs.x)
            return y < rhs.y;
        else
            return x < rhs.x;
    }
}zz[maxn];

int main()
{
    int n;
    while(~scanf("%d",&n)&&n){
        for(int i=0;i<n;i++)
            scanf("%d %d",&zz[i].x,&zz[i].y);
        sort(zz,zz+n);
        int ans=0;
        coord tt;
        for(int i=0;i<n;i++)
        for(int k=i+1;k<n;k++){
            tt.x=zz[i].x+zz[i].y-zz[k].y;
            tt.y=zz[i].y-zz[i].x+zz[k].x;
            if(!binary_search(zz,zz+n,tt)) continue;///STL中的二分查找函数;
            tt.x=zz[k].x+zz[i].y-zz[k].y;
            tt.y=zz[k].y-zz[i].x+zz[k].x;
            if(!binary_search(zz,zz+n,tt)) continue;
            ans++;
        }
        printf("%d\n",ans/2);
    }
    return 0;
}
上面只用了一半的公式:下面代码,用全部公式(用数组下标访问,没用二分查找公式不会这个函数的小伙伴可以看看)
#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int x[507],y[507];
int visit[207][207];
int main()
{
    int n,ans;
    while(~scanf("%d",&n))
    {
        ans=0;
        memset(visit,0,sizeof(visit));
        for(int i=0;i<n;i++)
        {
            scanf("%d %d",&x[i],&y[i]);
            x[i]+=100,y[i]+=100;
            visit[x[i]][y[i]]=1;
        }
        for(int i=0;i<n;i++)
        {
            for(int j=i+1;j<n;j++)
            {
                int dx=x[i]-x[j];
                int dy=y[i]-y[j];
                if(x[i]+dy>=0&&x[i]+dy<=200&&y[i]-dx>=0&&y[i]-dx<=200&&x[j]+dy>=0&&x[j]+dy<=200&&y[j]-dx>=0&&y[j]-dx<=200&&visit[x[i]+dy][y[i]-dx]&&visit[x[j]+dy][y[j]-dx])
                    ans++;
                if(x[i]-dy>=0&&x[i]-dy<=200&&y[i]+dx>=0&&y[i]+dx<=200&&x[j]-dy>=0&&x[j]-dy<=200&&y[j]+dx>=0&&y[j]+dx<=200&&visit[x[i]-dy][y[i]+dx]&&visit[x[j]-dy][y[j]+dx])
                    ans++;
            }
        }
        printf("%d\n",ans/4);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值