【USACO 15 DEC】最大流 Max Flow

本文介绍了一种利用树上差分和LCA算法解决复杂路径流量问题的方法,通过实例详细阐述了如何在不使用高级数据结构的情况下,计算树中节点的最大流量。文章提供了一段完整的C++代码实现,帮助读者理解算法的具体应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目】

传送门

题目描述:

Farmer John has installed a new system of N-1 pipes to transport milk between the N stalls in his barn (2 ≤ N ≤ 50,000), conveniently numbered 1…N. Each pipe connects a pair of stalls, and all stalls are connected to each-other via paths of pipes.

FJ is pumping milk between K pairs of stalls (1 ≤ K ≤ 100,000). For the ith such pair, you are told two stalls s i s_i si and t i t_i ti , endpoints of a path along which milk is being pumped at a unit rate. FJ is concerned that some stalls might end up overwhelmed with all the milk being pumped through them, since a stall can serve as a waypoint along many of the KK paths along which milk is being pumped. Please help him determine the maximum amount of milk being pumped through any stall. If milk is being pumped along a path from s i s_i si to t i t_i ti, then it counts as being pumped through the endpoint stalls s i s_i si and t i t_i ti, as well as through every stall along the path between them.

输入格式:

The first line of the input contains N and K.

The next N−1 lines each contain two integers x and y (x≠y) describing a pipe between stalls x and y.

The next K lines each contain two integers s and t describing the endpoint stalls of a path through which milk is being pumped.

输出格式:

An integer specifying the maximum amount of milk pumped through any stall in the barn.

样例数据:

输入
5 10
3 4
1 5
4 2
5 4
5 4
5 4
3 5
4 3
4 3
1 3
3 5
5 4
1 5
3 4

输出
9


【分析】

题意就去洛谷上去看啦~~~

其实这道题不用树剖啊那些高级数据结构,只用树上差分+ l c a lca lca就行了

由于这是对于点的差分,我们需要在两个端点分别 + 1 +1 +1 l c a − 1 lca-1 lca1 l c a lca lca 的父亲 − 1 -1 1

举个例子,假设有一条边 ( x , y ) (x,y) (x,y),差分数组为 d i d_i di,那么就 d x + + , d y + + , d l c a − − , d f a [ l c a ] − − d_x++,d_y++,d_{lca}--,d_{fa[lca]}-- dx++,dy++,dlca,dfa[lca]

那么从根开始 d f s dfs dfs,按照常规的差分操作,对每个点操作后的 d i d_i di 取个 m a x max max 就行了


【代码】

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 100005
using namespace std;
int n,k,t,Max;
int first[N],v[N],nxt[N];
int d[N],dep[N],fa[N][20];
void add(int x,int y)
{
	t++;
	nxt[t]=first[x];
	first[x]=t;
	v[t]=y;
}
void getfather(int x)
{
	int i,j;
	for(i=1;i<=17;++i)
	  fa[x][i]=fa[fa[x][i-1]][i-1];
	for(i=first[x];i;i=nxt[i])
	{
		j=v[i];
		if(j!=fa[x][0])
		{
			fa[j][0]=x;
			dep[j]=dep[x]+1;
			getfather(j);
		}
	}
}
int Lca(int x,int y)
{
	int i;
	if(dep[x]<dep[y])  swap(x,y);
	for(i=17;~i;--i)
	  if(dep[fa[x][i]]>=dep[y])
	    x=fa[x][i];
	if(x==y)  return x;
	for(i=17;~i;--i)
	  if(fa[x][i]!=fa[y][i])
	    x=fa[x][i],y=fa[y][i];
	return fa[x][0];
}
void dfs(int x)
{
	int i,j;
	for(i=first[x];i;i=nxt[i])
	{
		j=v[i];
		if(j!=fa[x][0])
		{
			dfs(j);
			d[x]+=d[j];
		}
	}
	Max=max(Max,d[x]);
}
int main()
{
	int x,y,i,j;
	scanf("%d%d",&n,&k);
	for(i=1;i<n;++i)
	{
		scanf("%d%d",&x,&y);
		add(x,y),add(y,x);
	}
	dep[1]=1,getfather(1);
	for(i=1;i<=k;++i)
	{
		scanf("%d%d",&x,&y);
		int lca=Lca(x,y);
		d[x]++,d[y]++,d[lca]--,d[fa[lca][0]]--;
	}
	dfs(1);
	printf("%d",Max);
	return 0;
}
内容概要:本文介绍了奕斯伟科技集团基于RISC-V架构开发的EAM2011芯片及其应用研究。EAM2011是一款高性能实时控制芯片,支持160MHz主频和AI算法,符合汽车电子AEC-Q100 Grade 2和ASIL-B安全标准。文章详细描述了芯片的关键特性、配套软件开发套件(SDK)和集成开发环境(IDE),以及基于该芯片的ESWINEBP3901开发板的硬件资源和接口配置。文中提供了详细的代码示例,涵盖时钟配置、GPIO控制、ADC采样、CAN通信、PWM输出及RTOS任务创建等功能实现。此外,还介绍了硬件申领流程、技术资料获取渠道及开发建议,帮助开发者高效启动基于EAM2011芯片的开发工作。 适合人群:具备嵌入式系统开发经验的研发人员,特别是对RISC-V架构感兴趣的工程师和技术爱好者。 使用场景及目标:①了解EAM2011芯片的特性和应用场景,如智能汽车、智能家居和工业控制;②掌握基于EAM2011芯片的开发板和芯片的硬件资源和接口配置;③学习如何实现基本的外设驱动,如GPIO、ADC、CAN、PWM等;④通过RTOS任务创建示例,理解多任务处理和实时系统的实现。 其他明:开发者可以根据实际需求扩展这些基础功能。建议优先掌握《EAM2011参考手册》中的关键外设寄存器配置方法,这对底层驱动开发至关重要。同时,注意硬件申领的时效性和替代方案,确保开发工作的顺利进行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值