Neuronal Dynamics:Two dimensions model 实验结果展示
一、演示效果和代码
本次实验以Morris-Lecar model 和 FitzHugh-Nagumo model两种模型为例研究了模型w,u随t变化的图像。
输出结果如下(蓝色线为 d u d t = 0 \frac{du}{dt}=0 dtdu=0,绿色线为 d w d t = 0 \frac{dw}{dt}=0 dtdw=0,黑色的线为(u,w)随时间t的变化轨迹曲线):
代码如下:
import numpy as np
import matplotlib.pyplot as plt
class two_dimensions_model():
#type=0 is Morris-Lecar model
#type=1 is FitzHugh-Nagumo model
def __init__(self):
self.C=20
self.Vl=-50
self.V1=100
self.V2=-70
self.gl=2
self.g1=4
self.g2=8
self.u1=0
self.u2=15
self.u3=10
self.u4=10
self.tw=0.1
self.type=0
self.b0=0
self.b1=1
self.I=0
def m0u(self,u):
return (1+np.tanh((u-self.u1)/self.u2))/2
def w0u(self,u):
return (1+np.tanh((u-self.u3)/self.u4))/2
def tu(self,u):
return self.tw/np.cosh((u-self.u3)/2/self.u4)
def dudt(self,u,w):
if self.type==0:
return 1/self.C*(-self.g1*self.m0u(u)*(u-self.V1)-self.g2*w*(u-self.V2)-self.gl*(u-self.Vl)+self.I)
elif self.type==1:
return u-u*u*u/3-w+self.I
def dwdt(self,u,w):
if self.type==0:
return -(w-self.w0u(u))*self.tu(u)
else:
return self.b0+self.b1*u-w
def plot_u_w_0_line(self,a,b,max_dif=0.1):
x, y = np.meshgrid(a, b)
x = x.T
y = y.T
imax = len(x)
jmax = len(x[0])
u = [[0 for j in range(jmax)] for i in range(imax)]
w = [[0 for j in range(jmax)] for i in range(imax)]
for i in range(imax):
for j in range(jmax):
i0 = x[i][j]
j0 = y[i][j]
u[i][j] = self.dudt(i0, j0)
w[i][j] = self.dwdt(i0, j0)
u1 = []
w1 = []
u2 = []
w2 = []
for i in range(imax):
minu = np.min(np.abs(u[i]))
minw = np.min(np.abs(w[i]))
if minu < max_dif:
j = np.where(minu == np.abs(u[i]))
u1.append(x[i][j])
w1.append(y[i][j])
if minw < max_dif:
j = np.where(minw == np.abs(w[i]))
u2.append(x[i][j])
w2.append(y[i][j])
plt.plot(u1, w1, color="b")
plt.plot(u2, w2, color="g")
def plot_vector(self, a, b):
x, y = np.meshgrid(a, b)
x = x.T
y = y.T
imax = len(x)
jmax = len(x[0])
u = [[0 for j in range(jmax)] for i in range(imax)]
w = [[0 for j in range(jmax)] for i in range(imax)]
for i in range(imax):
for j in range(jmax)

该文展示了使用Python对Morris-Lecar和FitzHugh-Nagumo模型的仿真结果,探讨了这两个神经元模型中u和w随时间变化的图像。在不同参数设置下,模型表现出不同的动态行为,如稳定点、振荡等。通过代码实现,模拟了电生理学中的复杂动力学现象。
最低0.47元/天 解锁文章
523

被折叠的 条评论
为什么被折叠?



