这个问题(非常常见)往往出现于这样的例子中:
- #include<iostream>
- using namespace std;
- class B {
- public:
- int f(int i) { cout << "f(int): "; return i+1; }
- // ...
- };
- class D : public B {
- public:
- double f(double d) { cout << "f(double): "; return d+1.3; }
- // ...
- };
- int main()
- {
- D* pd = new D;
- cout << pd->f(2) << '/n';
- cout << pd->f(2.3) << '/n';
- }
它输出的结果是:
f(double): 3.3
f(double): 3.6
而不是象有些人猜想的那样:
f(int): 3
f(double): 3.6
换句话说,在B和D之间并没有发生重载的解析。编译器在D的区域内寻找,找到了一个函数double f(double),并执行了它。它永远不会涉及(被封装的)B的区域。在C++中,没有跨越区域的重载——对于这条规则,继承类也不例外。更多的细节,参见《C++语言的设计和演变》和《C++程序设计语言》。
但是,如果我需要在基类和继承类之间建立一组重载的f()函数呢?很简单,使用using声明:
class D : public B {
public:
using B::f; // make every f from B available
double f(double d) { cout << "f(double): "; return d+1.3; }
// ...
};
进行这个修改之后,输出结果将是:
f(int): 3
f(double): 3.6
这样,在B的f()和D的f()之间,重载确实实现了,并且选择了一个最合适的f()进行调用。
这就是传说中的隐藏
什么是函数对象(function object)?
顾名思义,就是在某种方式上表现得象一个函数的对象。典型地,它是指一个类的实例,这个类定义了应用操作符operator()。
函数对象是比函数更加通用的概念,因为函数对象可以定义跨越多次调用的可持久的部分(类似静态局部变量),同时又能够从对象的外面进行初始化和检查(和静态局部变量不同)。例如:
class Sum {
int val;
public:
Sum(int i) :val(i) { }
operator int() const { return val; } // 取得值
int operator()(int i) { return val+=i; } // 应用
};
void f(vector v)
{
Sum s = 0; // initial value 0
s = for_each(v.begin(), v.end(), s); // 求所有元素的和
cout << "the sum is " << s << "/n";
//或者甚至:
cout << "the sum is " << for_each(v.begin(), v.end(), Sum(0)) << "/n";
}
注意一个拥有应用操作符的函数对象可以被完美地内联化(inline),因为它没有涉及到任何指针,后者可能导致拒绝优化。与之形成对比的是,现有的优化器几乎不能(或者完全不能?)将一个通过函数指针的调用内联化。
在标准库中,函数对象被广泛地使用以获得弹性。
4196

被折叠的 条评论
为什么被折叠?



