『转』各种算法的时间复杂度

本文详细介绍了多种排序算法,包括冒泡排序、选择排序、插入排序、堆排序、归并排序及快速排序等,分析了每种算法的时间复杂度,并讨论了稳定性和应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:http://blog.youkuaiyun.com/higirle_zhao/article/details/5415563

1.Hash 算法的时间复杂度:

 

O(1)

 

2.遍历二叉树的时间复杂度:

 

对含有n个节点的二叉树,遍历算法的时间复杂度为O(n),控件复杂度也为 O(n)

 

3。常见的排序算法的时间复杂度

 名称

 复杂度 说明 备注
 冒泡排序
Bubble Sort

O(N*N)

 

将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮

 
 

插入排序

Insertion sort

 

O(N*N)

 

逐一取出元素,在已经排序的元素序列中从后向前扫描,放到适当的位置

 

起初,已经排序的元素序列为空

 

选择排序

 

O(N*N)

 

首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此递归。

 
 

快速排序

Quick Sort

 

O(n *log2(n))

 

先选择中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使用这个过程(递归)。

 
 

堆排序Heap Sort

 

O(n *log2(n))

 

利用堆(heaps)这种数据结构来构造的一种排序算法。堆是一个近似完全二叉树结构,并同时满足堆属性:即子节点的键值或索引总是小于(或者大于)它的父节点。

近似完全二叉树

 

希尔排序

SHELL

 

O(n1+)

0<£<1

 

选择一个步长(Step) ,然后按间隔为步长的单元进行排序.递归,步长逐渐变小,直至为1.

 
 

箱排序
Bin Sort

 

O(n)

 

设置若干个箱子,把关键字等于 k 的记录全都装入到第 k 个箱子里 ( 分配 ) ,然后按序号依次将各非空的箱子首尾连接起来 ( 收集 ) 。

 

分配排序的一种:通过 " 分配 " 和 " 收集 " 过程来实现排序。

 

桶排序

Bucket Sort

 

O(n)

 

桶排序的思想是把 [0 , 1) 划分为 n 个大小相同的子区间,每一子区间是一个桶。

一、几种常见算法的介绍及复杂度分析

1.基本概念

1.1稳定排序(stable sort)和非稳定排序

稳定排序是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,。反之,就是非稳定的排序。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,

则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。

1.2内排序( internal sorting )和外排序( external sorting)

在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序; 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

1.3算法的时间复杂度和空间复杂度

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。



2.几种常见算法

2.1冒泡排序 (Bubble Sort)

冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。算法时间复杂度是O(n ^2)。

2.2选择排序 (Selection Sort)

选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

选择排序是不稳定的。算法复杂度是O(n ^2 )。

2.3插入排序 (Insertion Sort)

插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i]又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

直接插入排序是稳定的。算法时间复杂度是O(n ^2)

2.4堆排序

堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

堆排序是不稳定的。算法时间复杂度O(nlog n)。

2.5归并排序

设有两个有序(升序)序列存储在同一数组中相邻的位置上,不妨设为A[l..m],A[m+1..h],将它们归并为一个有序数列,并存储在A[l..h]。

其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。

2.6快速排序

快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理它左右两边的数,直到基准点的左右只有一个元素为止。

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n ^2)。
本文链接网址http://www.sfcode.cn/soft/019693353.htm
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值