Spark(一)——IDEA环境搭建

本文详细介绍如何使用Maven管理Apache Spark项目的依赖,包括配置POM文件以引入Spark核心及周边模块,如Spark Streaming、Spark SQL等。同时,展示了如何设置Scala和Java版本,以及配置Maven插件进行编译和测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、pom依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>groupId</groupId>
    <artifactId>com.myspark</artifactId>
    <version>1.0-SNAPSHOT</version>


    <properties>
        <spark.version>2.2.2</spark.version>
        <scala.version>2.10</scala.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>


    </dependencies>


    <build>
        <plugins>
            <plugin>
                <groupId>org.scala-tools</groupId>
                <artifactId>maven-scala-plugin</artifactId>
                <version>2.15.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>

            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.0</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-surefire-plugin</artifactId>
                <configuration>
                    <skip>true</skip>
                </configuration>
            </plugin>


        </plugins>
    </build>


</project>

2、下载开发包

3、测试代码

object Test {

  def main(args: Array[String]): Unit = {

    System.setProperty("hadoop.home.dir", "E:\\开发软件\\hadoop-common-2.2.0-bin-master\\hadoop-common-2.2.0-bin-master")
    val conf = new SparkConf().setAppName(" Secondary Sort ").setMaster("local")
    conf.set("spark.testing.memory", "2147480000")
    var sc = new SparkContext(conf)
    val rdd = sc.textFile("E:\\README.md")
    val test = rdd.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _).collect()
    test.foreach(println)

  }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值