Gym - 101853C Intersections
题意
就是给你n,然后给你两个n的排列,让你把两个排列中相同的连线,求有多少对相交的线
题解
第一反应就是对于每个数来说,他在第一行的位置的左边的数,连到他在第二行的位置的右边的数的个数。然后对于每个数求个和。然后又想到对第一排重新标号,那就是对重标号完的第二行求逆序对。那就很好写了~只不过我爆int,wa了两发。
ac代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <ctime>
#include <map>
#include <set>
#include <iomanip>
//#include <unordered_map>
#pragma comment(linker, "/STACK:102400000,102400000")
#define fir first
#define sec second
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#define clr(x) memset(x,0,sizeof(x))
#define cld(x) memset(x,-1,sizeof(x))
#define clx(x) memset(x,63,sizeof(x))
#define cln(x) memset(x,-64,sizeof(x))
#define rush() int T;scanf("%d",&T);while(T--)
#define pi 3.1415926
#define VM 100047
#define EM 400047
#define rd(x) scanf("%d",&x);
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int inf = 0x3f3f3f3f;
const ll llf = 0x3f3f3f3f3f3f3f3f;
const int maxn = (int) 1e6 + 7;
const double eps = 1e-10;
const ll mod1 = (int) 1e9 + 7;
const ll mod2 = 998244353;
const ll has = 99959;
const int dx[] = {0, 1, 0, -1};
const int dy[] = {1, 0, -1, 0};
int a[maxn], c[maxn], n;
map<int, int> mp;
ll ans;
void x(int l, int r) {
int mid = (l + r) / 2, i, j, tmp;
if (r > l) {
x(l, mid);
x(mid + 1, r);
tmp = l;
for (i = l, j = mid + 1; i <= mid && j <= r;) {
if (a[i] > a[j]) {
c[tmp++] = a[j++];
ans += mid - i + 1;
} else c[tmp++] = a[i++];
}
if (i <= mid) for (; i <= mid;) c[tmp++] = a[i++];
if (j <= r) for (; j <= r;) c[tmp++] = a[j++];
for (i = l; i <= r; i++) a[i] = c[i];
}
}
int main() {
std::ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
rush() {
mp.clear();
ans = 0;
clr(a);
clr(c);
scanf("%d", &n);
int xx;
for (int i = 1; i <= n; i++) {
scanf("%d", &xx);
mp[xx] = i;
}
for (int i = 1; i <= n; i++) {
scanf("%d", &xx);
a[i] = mp[xx];
}
x(1, n);
printf("%lld\n", ans);
}
return 0;
}