How DES works

本文详细介绍Data Encryption Standard (DES)加密算法的历史背景、关键技术参数及工作原理。包括密钥大小为56位、分组长度为64位等关键特性,并深入解析初始置换、子密钥生成、扩展置换、S盒等核心组件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
     Data Encryption Standard(DES) , also called as Data Encryption Algorithm(DEA), has been used for over two decades. It has been a landmark in cryptographic algorithms. The origins of DES go back to 1972. The US National Bureau of Standards(NBS) now know as the National Institute of Standards and Technology(NIST) want to develop a project for protecting the data in computers and the communications between computers. Instead of developing a new algorithm then decided to adopt the IBM’s Lucifer as their cryptographic algorithms in 1976. and soon, it was renamed as DES.
Key Size:         64 bits (which only used 56 bits in the 64 bits key)
Block Size:     64 bits
The notation for convenient: give two blocks of L and R bits. LR denoted the block consisting of L bits followed by the bits of R
1. the sketch of DES
The input of the ciphering process is 64 bits plain text.
Sketch of the ciphering computation shown by the figure below
 

From the figure we can see that the mainly attention should be take in the following item

1.       What is the Initial Permutation?

2.       How the K1 K2 to K16 generate?

3.       What is the cipher function f in the figure?

4.       What is the Inverse Initial Permutation? this is similar with the question 1

 

Initial Permutation

So first let me explanation what is the Initial Permutation.

The input block which consist 64 bits plain text take permute transform at first. The table of the permute transform as below.

IP 
58    50   42    34    26   18    10    2
60    52   44    36    28   20    12    4
62    54   46    38    30   22    14    6
64    56   48    40    32   24    16    8
57    49   41    33    25   17     9    1
59    51   43    35    27   19    11    3
61    53   45    37    29   21    13    5
63    55   47    39    31   23    15    7

 The table is called as IP(Initial Permutation), and denoted as the block of the 64 bits’ bit 58 is used as the new block’s first bit, and 50 of the old as the next bit of the new block, and so on , the bit 7 as the last bit of the new output block.

And the inverse Initial Permutation is the inverse of the IP

IP-1

40     8   48    16    56   24    64   32
39     7   47    15    55   23    63   31
38     6   46    14    54   22    62   30
37     5   45    13    53   21    61   29
36     4   44    12    52   20    60   28
35     3   43    11    51   19    59   27
34     2   42    10    50   18    58   26
33     1   41     9    49   17    57   25

How The K1 to K16 generate?

      The Sketch of Key Generation is shown below:

The Primitive key takes a permuted choice according the table below:

PC-1
57   49    41   33    25    17    9
1   58    50   42    34    26   18
10    2    59   51    43    35   27
19   11     3   60    52    44   36
63   55    47   39    31    23   15
7   62    54   46    38    30   22
14    6    61   53    45    37   29
21   13     5   28    20    12    4

The permutation produce two group bits: first group of the permutation is denoted as C0 and the second denoted as D0. Then both C0 and D0 performed LEFT SHIFTS by 1 or 2 bits and produce C1 and D1. Then the combination of C1 and D1 perform another PERMUTED CHOICE and produce K1. And so on, the K1 and D1 perform LEFT SHIFTS and PERMUTED CHOICE and produce K2 and then K3 to K16. And the iteration number is different in each round. The iteration number for each round and PERMUTED CHOICE 2 after LEFT SHIFTS are described in the figures below.

PC-1

 

14   17    11   24     1     5
3   28    15    6    21    10
23   19    12    4    26     8
16    7    27   20    13     2
41   52    31   37    47    55
30   40    51   45    33    48
44   49    39   56    34    53
46   42    50   36    29    32
Left Shift Number
Iteration number12345678910111213141516
Left Shift number1122222212222221
what is the funciton f
A sketch of the calculation of f(R,K) is given in Figure below
Which the E denote as Expansion Permutation. During the Expansion Permutation the 32bits input 
is expanded to 48 bits. The E denote a function which takes a block of 32 bits as
input and yield a block of 48 bits as output. The Expansion Permutation table is
shown below.
32    1     2    3     4     5
 4    5     6    7     8     9
 8    9    10   11    12    13
12   13    14   15    16    17
16   17    18   19    20    21
20   21    22   23    24    25
24   25    26   27    28    29
28   29    30   31    32     1
Then the out put of E perform a XOR with the 48bits key. The result of XOR is writed as 8 blocks ,
each block has 6 bits. Every block in 8 blocks corresponding a Substitution table,which Substitution boxes
(also called S-boxes) S-boxes take a block of 6 bits as input and yield a block of 4 bits as output.
the 8 S-boxes tables a shown below.
S1
14   4 13   1  2  15 11   8  3  10  6  12  5   9  0   7
O  15  7   4 14   2 13   1 10   6 12  11  9   5  3   8
4   1 14   8 13   6  2  11 15  12  9   7  3  10  5   0
15  12  8   2  4   9  1   7  5  11  3  14 10   O  6  13
S2
15   1  8  14  6  11  3   4  9   7  2  13 12   O  5  10
3  13  4   7 15   2  8  14 12   0  1  10  6   9 11   5
0  14  7  11 10   4 13   1  5   8 12   6  9   3  2  15
13   8 10   1  3  15  4   2 11   6  7  12  0   5 14   9
 S3
10   0  9  14  6   3 15   5  1  13 12   7 11   4  2   8
13   7  O   9  3   4  6  10  2   8  5  14 12  11 15   1
13   6  4   9  8  15  3   0 11   1  2  12  5  10 14   7
1  10 13   0  6   9  8   7  4  15 14   3 11   5  2  12
S4
 7  13 14   3  0   6  9  10  1   2  8   5 11  12  4  15
13   8 11   5  6  15  O   3  4   7  2  12  1  10 14   9
10   6  9   0 12  11  7  13 15   1  3  14  5   2  8   4
 3  15  O   6 10   1 13   8  9   4  5  11 12   7  2  14

S5
 2  12  4   1  7  10 11   6  8   5  3  15 13   O 14   9
14  11  2  12  4   7 13   1  5   0 15  10  3   9  8   6
 4   2  1  11 10  13  7   8 15   9 12   5  6   3  O  14
11   8 12   7  1  14  2  13  6  15  O   9 10   4  5   3
S6
12   1 10  15  9   2  6   8  O  13  3   4 14   7  5  11
10  15  4   2  7  12  9   5  6   1 13  14  O  11  3   8
 9  14 15   5  2   8 12   3  7   0  4  10  1  13 11   6
 4   3  2  12  9   5 15  10 11  14  1   7  6   0  8  13
S7
 4  11  2  14 15   0  8  13  3  12  9   7  5  10  6   1
13   0 11   7  4   9  1  10 14   3  5  12  2  15  8   6
 1   4 11  13 12   3  7  14 10  15  6   8  0   5  9   2
 6  11 13   8  1   4 10   7  9   5  0  15 14   2  3  12
S8
13   2  8   4  6  15 11   1 10   9  3  14  5   0 12   7
 1  15 13   8 10   3  7   4 12   5  6  11  0  14  9   2
 7  11  4   1  9  12 14   2  0   6 10  13 15   3  5   8
 2   1 14   7  4  10  8  13 15  12  9   0  3   5  6  11
 Now Let's the input of 6 bits is B. we take the first and the last bits combined as a 
2 based number range from 0 to 3. Let that number be R the combine the middle 4 bits of the B as another 2
based nuumber range from 0 to 7. Let that number be C. So the input of block will take
the number Si S-boxes table's row R and Column C as it's output. you can see that all the
number in the S-boxes are all range from 0 to 15. you can use 4 bits to denote the number
so the output is 4 bits.



All the 8 group of s-boxes combine as a 32 bits output and perform Permutation straight
we call it P-box Permutation
P-box Permutation
16     7    20    21    29    12    28    17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9
19 13 30 6 22 11 4 25
until this i have finished the introduce about DES. There must be many errores in this article
this is my first article write in English. if you find any errors please let me know. i will very
glad to modify it.

The P-Box permutation in shown in table below
内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值