TimesIsMoney

本文介绍了一种使用哈希表解决大规模整数序列查询问题的方法。通过优化哈希函数和采用链地址法,有效地解决了传统数组方法面临的内存限制问题,避免了超时错误。

TimesIsMoney

Time Limit: 1000MS  Memory Limit: 65536KB
Problem Description

给你一个序列,有N个整数(int以内),判断一个数在这个序列中出现几次。

Input

多组输入,输入到文件结尾
首先输入一个n,然后输入n个整数。

在输入一个m,代表查询的个数 ,然后输入m个数(int以内)。

n,m <= 100000;

Output

对应每一次查询,输出这个数在序列中出现几次。

Example Input
5
1 2 2 3 5
3
2 4 5
Example Output
2
0
1

  解题思路:一看到题目就想到用哈希表,最原本的思路是直接利用输入的数作为下标来存储数组,

               

int a[110000],ha[110000];
memset(ha,0,sizeof (ha));
for (int i=0;i<n;i++)
  {
   scanf ("%d",&a[i]);
    ha[a[i]] = a[i];
   }
   

                    可是把这道题想的太过简单了,输入的N个数是整数int范围之内的,(至少是10的9次方),

                    而N的范围只有100000大小,因此一定会出现TLE,在N遍TLE的提交后,才想到利用链地址

                    的方法,(F(key) = key%p),p选择了20 之内的质数19;链表头指针数组的大小也要按照p的大

                    小做选择,否则会出现MLE。

 

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>

using namespace std;

int a[110000];

struct node
{
    int data;
    int num;//利用num计数,重复的元素不再插入,直接将指针指向的num++
    struct node *next;
};

struct node *ha[100];

int main()
{
    int n,m,key;
    int i,j;
    while (~scanf ("%d",&n))
    {
        for (i=0; i<100; i++)//根据P的大小开内存
        {
            ha[i] = (struct node *)malloc (sizeof (struct node));
            ha[i]->next = NULL;
        }
        for (i=0; i<n; i++)
        {
            scanf ("%d",&a[i]);
            int t = a[i]%19;
            struct node *p = (struct node *)malloc (sizeof (struct node));
            p->data = a[i];
            struct node *q = ha[t];
            while (q->next!=NULL)//链表的数据域按从大到小的顺序建立(直接插入法)
            {
                if (p->data < q->next->data)
                {
                    p->next = q->next;
                    q->next = p;
                    p->num=1;
                    break;
                }
                if (p->data == q->next->data)
                {
                    q->next->num++;
                    break;
                }
                q = q->next;
            }
            if (q->next == NULL)
            {
                q->next = p;
                p->next = NULL;
                p->num=1;
            }
        }
        scanf ("%d",&m);
        for (i=0; i<m; i++)
        {
            int f = 0;
            scanf ("%d",&key);
            int t = key%19;
            struct node *q = ha[t]->next;
            while (q!=NULL)
            {
                if (q->data==key)
                {
                    f = 1;
                    printf ("%d\n",q->num);
                    break;
                }
                q = q->next;
            }
            if (f==0)
                printf ("0\n");
        }
    }

    return 0;
}

下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
【集群划分】基于kmeans的电压调节的集群划分【IEEE33节点】内容概要:本文围绕基于KMeans算法的电压调节集群划分展开,以IEEE33节点配电网为研究对象,探讨含分布式光伏的配电网中电压协调控制问题。通过KMeans聚类算法将网络节点划分为若干电压调控集群,旨在降低电压越限风险、提升配电网运行稳定性。文中结合Matlab代码实现,详细展示了集群划分过程、聚类结果可视化及后续电压协调控制策略的设计思路,适用于电力系统中分布式能源接入带来的电压管理挑战。该方法有助于实现分区治理、优化资源配置,并为后续的分布式控制提供结构基础。; 适合人群:具备电力系统基础知识,熟悉Matlab编程,从事配电网优化、分布式能源管理或智能电网相关研究的研究生及科研人员;有一定机器学习背景的工程技术人员。; 使用场景及目标:①应用于含高渗透率光伏发电的配电网电压调控研究;②用于复现IEEE33节点系统中的集群划分与电压协调控制模型;③支撑科研论文复现、课题开发与算法验证,推动智能配电网的分区协同控制技术发展; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注KMeans在电网拓扑数据上的特征选取与距离度量方式,理解聚类结果对电压控制性能的影响,并可进一步拓展至动态聚类或多目标优化集成。
先看效果: https://pan.quark.cn/s/92cf62472d7f 在C++编程领域中,**流类库与输入输出**构成了极为关键的基础元素,其主要功能在于管理程序与外部设备之间的数据传递。 流类库通过提供一系列丰富的类和函数,为这种数据交互提供了强大的支持,从而让开发人员能够便捷地完成输入输出任务。 ### 三种核心的输出流#### 1. `ostream``ostream`类作为一个输出流的对象,在流类库中扮演着核心的角色。 它通常用于将数据传输至标准输出设备(例如显示屏)。 `cout`作为一个预定义的`ostream`对象,主要用于标准输出。 ##### 特点:- 默认情况下与标准输出设备相连接。 - 能够重新指向其他输出设备,比如文件。 - 支持输出多种类型的数据,涵盖字符串、数字等。 - 提供了多样化的格式化输出选项。 #### 2. `ofstream``ofstream`类作为`ostream`的一个派生类,专门用于执行文件输出操作。 它使得开发人员能够将数据写入到磁盘文件中。 ##### 特点:- 在使用时自动打开文件以进行写入操作。 - 提供了多种文件打开模式,包括追加、覆盖等。 - 支持以二进制和文本两种模式进行输出。 - 能够方便地进行错误状态检测。 #### 3. `ostringstream``ostringstream`类同样是`ostream`的派生类,但它用于在内存中构建字符串流,而不是直接输出到显示屏幕或文件。 这对于需要动态生成字符串的应用场景非常适用。 ##### 特点:- 将输出结果暂存于内存之中。 - 可以转换为常规字符串格式。 - 适用于动态构建字符串序列。 - 常用于日志记录、数据格式化等场景。 ### 流的操作机制流可以被理解为一种“字节传...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值