This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
6
5 2 3 6 4 1
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
0 4 5
solution:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
#define endl '\n'
const int N=1e6+5;
int cnt=0,head[N],indegree[N];
vector<int>ans;
struct node
{
int to,next;
}edge[N];
void addedge(int u,int v)
{
cnt++;
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt;
}
int n,m,k;
bool test(vector<int>&t)
{
int testdegree[N];
copy(indegree,indegree+N,testdegree);
for(int i=0;i<t.size();i++)
{
if(testdegree[t[i]])return false;
for(int u=head[t[i]];u>0;u=edge[u].next)
{
testdegree[edge[u].to]--;
}
}
return true;
}
int main()
{
cin>>n>>m;
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
addedge(a,b);
indegree[b]++;
}
cin>>k;
for(int i=0;i<k;i++)
{
vector<int>tmp(n);
for(int i=0;i<n;i++)
{
cin>>tmp[i];
}
if(!test(tmp))ans.push_back(i);
}
for(int i=0;i<ans.size();i++)
{
if(i)cout<<' ';
cout<<ans[i];
}
return 0;
}
使用了链式前向星存储图的边,之后就是利用copy函数依次复制入度数组的数据,然后每经过一个结点就删除该结点的出度所对结点,根据题目给出数据元素依次删除,直至出现有入度不为0的元素或者删除完毕。