Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤105) is the number of integers in the sequence, and p (≤109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
solution:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define endl '\n'
int main()
{
ll n,p;cin>>n>>p;
vector<ll>a(n);
for(int i=0;i<n;i++)cin>>a[i];
sort(a.begin(),a.end());
int ans=0;
int maxx=a[n-1],minn=a[0];
int i=0;
int j=0;
while(j<n)
{
while(a[i]*p>=a[j] && j<n)
{
j++;
}
if(a[i]*p<a[j] && j<n)
{
ans=max(ans,j-i);
i++;
}
if(j==n)
{
ans=max(ans,j-i);
break;
}
}
cout<<ans<<endl;
}
大致思路是,先把给定的数组进行一遍排序,然后使用双指针i,j,分别指向左端(最小)和右端(最大),然后当mp>=M时,j不断右移直到不满足,此刻如果j没移到数组最右端,则记录当前最大值,并将i右移一位,否则标志已经获得最大数列长度,之后只能将i右移也就是缩短,无意义,结束循环。