PostgreSQL的查询语句的连接方式与查询计划比较--多表连接(二)

PostgreSQL多表连接优化
本文通过多个步骤对比分析了PostgreSQL中不同连接条件对查询计划的影响,包括连接条件的增减及其对连接顺序和算法选择的影响。
续: PostgreSQL的查询语句的连接方式与查询计划比较--多表连接(一)

--step5:对比step3,增加连接条件(连接条件变多但多余的条件可推导出相等故可合并)

test=# explain select * from A, B, C, D where A.c1=B.c1 and B.c1=C.c1 AND C.c1=D.c1 and A.c1=C.c1 and B.c1=D.c1;

                                  QUERY PLAN

------------------------------------------------------------------------------

 Merge Join  (cost=541.37..27731.14 rows=1770590 width=48)

   Merge Cond: (a.c1 = c.c1)

   ->  Merge Join  (cost=270.68..562.65 rows=18818 width=24)

         Merge Cond: (a.c1 = b.c1)

         ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

               Sort Key: a.c1

               ->  Seq Scan on a  (cost=0.00..29.40 rows=1940 width=12)

         ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

               Sort Key: b.c1

               ->  Seq Scan on b  (cost=0.00..29.40 rows=1940 width=12)

   ->  Materialize  (cost=270.68..609.70 rows=18818 width=24)

         ->  Merge Join  (cost=270.68..562.65 rows=18818 width=24)

               Merge Cond: (c.c1 = d.c1)

               ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                     Sort Key: c.c1

                     ->  Seq Scan on c  (cost=0.00..29.40 rows=1940 width=12)

               ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                     Sort Key: d.c1

                     ->  Seq Scan on d  (cost=0.00..29.40 rows=1940 width=12)

(19 rows)

分析:

1)   连接条件与setp3比,查询计划没有特殊变化

2)   连接条件可以推导出:A.c1B.c1C.c1D.c1是相等的,所以和step3的查询计划没有什么变化

 

--step6:对比step3,增加连接条件

test=# explain select * from A, B, C, D where A.c1=B.c1 and B.c1=C.c1 AND C.c1=D.c1 and A.c2=C.c2 and B.c2=D.c2;

                                        QUERY PLAN

 

--------------------------------------------------------------------------------

----------

 Merge Join  (cost=547.27..569.10 rows=44 width=48)

   Merge Cond: ((a.c1 = b.c1) AND (d.c2 = b.c2))

   ->  Sort  (cost=411.93..414.21 rows=912 width=36)

         Sort Key: a.c1, d.c2

         ->  Hash Join  (cost=301.90..367.09 rows=912 width=36)

               Hash Cond: (d.c1 = a.c1)

               ->  Seq Scan on d  (cost=0.00..29.40 rows=1940 width=12)

               ->  Hash  (cost=300.72..300.72 rows=94 width=24)

                     ->  Merge Join  (cost=270.68..300.72 rows=94 width=24)

                           Merge Cond: ((a.c1 = c.c1) AND (a.c2 = c.c2))

                           ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                                 Sort Key: a.c1, a.c2

                                 ->  Seq Scan on a  (cost=0.00..29.40 rows=1940

width=12)

                           ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                                 Sort Key: c.c1, c.c2

                                 ->  Seq Scan on c  (cost=0.00..29.40 rows=1940

width=12)

   ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

         Sort Key: b.c1, b.c2

         ->  Seq Scan on b  (cost=0.00..29.40 rows=1940 width=12)

(19 rows)

分析:

1)   连接条件与setp3比,连接次序依旧是:AB->ABC->ABCD

 

--step6:对比step3step4,增加新的连接条件,减少可推导出4个关系相等的连接条件

test=# explain select * from A, B, C, D where A.c1=B.c1 AND C.c1=D.c1 and A.c2=C.c2 and B.c2=D.c2;

                                  QUERY PLAN

------------------------------------------------------------------------------

 Merge Join  (cost=3797.43..4168.23 rows=8853 width=48)

   Merge Cond: ((a.c2 = c.c2) AND (b.c2 = d.c2))

   ->  Sort  (cost=1898.72..1945.76 rows=18818 width=24)

         Sort Key: a.c2, b.c2

         ->  Merge Join  (cost=270.68..562.65 rows=18818 width=24)

               Merge Cond: (a.c1 = b.c1)

               ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                     Sort Key: a.c1

                     ->  Seq Scan on a  (cost=0.00..29.40 rows=1940 width=12)

               ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                     Sort Key: b.c1

                     ->  Seq Scan on b  (cost=0.00..29.40 rows=1940 width=12)

   ->  Sort  (cost=1898.72..1945.76 rows=18818 width=24)

         Sort Key: c.c2, d.c2

         ->  Merge Join  (cost=270.68..562.65 rows=18818 width=24)

               Merge Cond: (c.c1 = d.c1)

               ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                     Sort Key: c.c1

                     ->  Seq Scan on c  (cost=0.00..29.40 rows=1940 width=12)

               ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                     Sort Key: d.c1

                     ->  Seq Scan on d  (cost=0.00..29.40 rows=1940 width=12)

(22 rows)

分析:

1)   step3比,新增ACBD之间的连接条件(A.c2=C.c2 and B.c2=D.c2)

2)   step3比,减少可推导出AC之间相等的连接条件(B.c1=C.c1)

3)   连接条件与setp3比,连接次序是紧密树方式:ABCD->ABCD

4)   连接算法采用的是归并连接(因为每2个关系,都依据连接条件排序)

 

--step7:对比step3,减少连接条件

test=# explain select * from A, B, C, D where A.c1=B.c1 and B.c1=C.c1;

                                  QUERY PLAN

------------------------------------------------------------------------------

 Nested Loop  (cost=324.33..4433560.06 rows=354117900 width=48)

   ->  Hash Join  (cost=324.33..7052.06 rows=182535 width=36)

         Hash Cond: (a.c1 = c.c1)

         ->  Merge Join  (cost=270.68..562.65 rows=18818 width=24)

               Merge Cond: (a.c1 = b.c1)

               ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                     Sort Key: a.c1

                     ->  Seq Scan on a  (cost=0.00..29.40 rows=1940 width=12)

               ->  Sort  (cost=135.34..140.19 rows=1940 width=12)

                     Sort Key: b.c1

                     ->  Seq Scan on b  (cost=0.00..29.40 rows=1940 width=12)

         ->  Hash  (cost=29.40..29.40 rows=1940 width=12)

               ->  Seq Scan on c  (cost=0.00..29.40 rows=1940 width=12)

   ->  Materialize  (cost=0.00..39.10 rows=1940 width=12)

         ->  Seq Scan on d  (cost=0.00..29.40 rows=1940 width=12)

(15 rows)

分析:

1)   setp3比,连接次序依旧是:AB->ABC->ABCD

2)   在关系D上,不存在连接条件,所以对于关系DABC这个新关系,做得是笛卡尔积

PostgreSQL 支持连接方式,以下是不同连接方式的简介及示例: - **左连接(LEFT JOIN)**:返回左中的所有记录以及右中匹配的记录,若右无匹配记录,则右部分用 NULL 填充。示例如下: ```sql -- 假设有 table1 和 table2,连接它们 SELECT * FROM table1 LEFT JOIN table2 ON table1.column_name = table2.column_name; ``` - **右连接(RIGHT JOIN)**:连接相反,返回右中的所有记录以及左中匹配的记录,若左无匹配记录,则左部分用 NULL 填充。 - **全外连接(FULL OUTER JOIN)**:返回左和右中的所有记录,当某行在另一中无匹配记录时,用 NULL 填充。示例如下: ```sql SELECT * FROM table1 FULL OUTER JOIN table2 ON table1.column_name = table2.column_name; ``` - **内连接(INNER JOIN)**:只返回两个中匹配的记录。可以连接两个或,示例如下: ```sql -- 连接两个 SELECT * FROM table1 INNER JOIN table2 ON table1.column_name = table2.column_name; -- 连接三个 SELECT * FROM table1 INNER JOIN table2 ON table1.column_name = table2.column_name INNER JOIN table3 ON table2.another_column = table3.another_column; ``` - **自连接(Self - Join)**:将自身进行连接,常用于查询分层数据或比较同一的行。例如查询分层数据示例: ```sql SELECT e1.employee_name, e2.manager_name FROM employees e1 JOIN employees e2 ON e1.manager_id = e2.employee_id; ``` - **交叉连接(CROSS JOIN)**:返回两个的笛卡尔积,即左的每一行的每一行组合。示例如下: ```sql SELECT * FROM table1 CROSS JOIN table2; ``` - **自然连接(NATURAL JOIN)**:基于两个中具有相同名称的列进行连接。示例如下: ```sql SELECT * FROM table1 NATURAL JOIN table2; ``` - **横向连接(LATERAL JOIN)**:允许在查询中使用子查询引用外部查询的列。例如计算博客年龄使用 LATERAL JOIN 获取报。 此外,别名可用于使查询更具可读性,可对长名使用别名、在连接子句中使用别名以及在自连接中使用别名等 [^1]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值