二维数组 指针

 
#include <iostream>
using namespace std;

void print(int * a)
{
    cout<<*a<<endl;
}

int main()
{

    int a[3][4] =
    {
        {1,2,3,4},
        {5,6,7,8},
        {9,10,11,12}
    };

    //下面5中方法都能表示a[1][1]
    cout<<*(&a[1][1])<<endl;
    cout<<*(&a[0][0] + 5)<<endl;
    cout<<*(*(a+1) + 1)<<endl;
    cout<<*(*a + 5)<<endl;   
    cout<<*(a[1] + 1) <<endl;
   


    //下面3个地址都是0X0012FF50,但是类型却不一样
    cout<<a<<endl;//int [3][4] 指向二维数组
    cout<<a[0]<<endl;//int [4] 指向一维数组,可以和下面的指针互传值
    cout<<&a[0][0]<<endl;//int * 指向一维数组首元素

    //a == a[0]; 有错误

    int (*p)[4];//p为行指针
    p == a;//正确
    p == a + 1;//正确
       
    return 0;
}

更多请见:
http://blog.youkuaiyun.com/PEPSI_COLA/archive/2007/05/21/1618709.aspx
http://blog.youkuaiyun.com/Thinkred/archive/2005/12/21/557768.aspx
http://blog.youkuaiyun.com/csufuyi/archive/2007/01/20/1488306.aspx
http://blog.youkuaiyun.com/iu_81/archive/2007/09/12/1782642.aspx
http://blog.youkuaiyun.com/zhmili/archive/2007/08/13/1740357.aspx

源码来自:https://pan.quark.cn/s/7a757c0c80ca 《在Neovim中运用Lua的详尽教程》在当代文本编辑器领域,Neovim凭借其卓越的性能、可扩展性以及高度可定制的特点,赢得了程序开发者的广泛青睐。 其中,Lua语言的融入更是为Neovim注入了强大的活力。 本指南将深入剖析如何在Neovim中高效地运用Lua进行配置和插件开发,助你充分发挥这一先进功能的潜力。 一、Lua为何成为Neovim的优选方案经典的Vim脚本语言(Vimscript)虽然功能完备,但其语法结构与现代化编程语言相比显得较为复杂。 与此形成对比的是,Lua是一种精简、轻量且性能卓越的脚本语言,具备易于掌握、易于集成的特点。 因此,Neovim选择Lua作为其核心扩展语言,使得配置和插件开发过程变得更加直观和便捷。 二、安装与设置在Neovim中启用Lua支持通常十分简便,因为Lua是Neovim的固有组件。 然而,为了获得最佳体验,我们建议升级至Neovim的最新版本。 可以通过`vim-plug`或`dein.vim`等包管理工具来安装和管理Lua插件。 三、Lua基础在着手编写Neovim的Lua配置之前,需要对Lua语言的基础语法有所掌握。 Lua支持变量、函数、控制流、表(类似于数组和键值对映射)等核心概念。 它的语法设计简洁明了,便于理解和应用。 例如,定义一个变量并赋值:```lualocal myVariable = "Hello, Neovim!"```四、Lua在Neovim中的实际应用1. 配置文件:Neovim的初始化文件`.vimrc`能够完全采用Lua语言编写,只需在文件首部声明`set runtimepath^=~/.config/nvim ini...
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不使用机械式位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估算与控制。文中结合STM32 F4高性能微控制器平台,采用如滑模观测器(SMO)、扩展卡尔曼滤波(EKF)或高频注入法等先进观测技术,实现对电机反电动势或磁链的实时估算,进而完成磁场定向控制(FOC)。研究涵盖了控制算法设计、系统建模、仿真验证(可能使用Simulink)以及在嵌入式平台上的代码实现与实验测试,旨在提高电机驱动系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电机控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师;熟悉C语言和MATLAB/Simulink工具者更佳。; 使用场景及目标:①为永磁同步电机驱动系统在高端制造、新能源汽车、家用电器等领域提供无位置传感器解决方案的设计参考;②指导开发者在STM32平台上实现高性能FOC控制算法,掌握位置观测器的设计与调试方法;③推动电机控制技术向低成本、高可靠方向发展。; 其他说明:该研究强调理论与实践结合,不仅包含算法仿真,还涉及实际硬件平台的部署与测试,建议读者在学习过程中配合使用STM32开发板和PMSM电机进行实操验证,以深入理解控制策略的动态响应与鲁棒性问题。
先看效果: https://pan.quark.cn/s/21391ce66e01 企业级办公自动化系统,一般被称为OA(Office Automation)系统,是企业数字化进程中的关键构成部分,旨在增强组织内部的工作效能与协同水平。 本资源提供的企业级办公自动化系统包含了详尽的C#源代码,涉及多个技术领域,对于软件开发者而言是一份极具价值的参考资料。 接下来将具体介绍OA系统的核心特性、关键技术以及在实践操作中可能涉及的技术要点。 1. **系统构造** - **三层构造**:大型OA系统普遍采用典型的三层构造,包含表现层、业务逻辑层和数据访问层。 这种构造能够有效分离用户交互界面、业务处理过程和数据存储功能,从而提升系统的可维护性与可扩展性。 2. **C#编程语言** - **C#核心**:作为开发语言,C#具备丰富的类库和语法功能,支持面向对象编程,适用于开发复杂的企业级应用。 - **.NET Framework**:C#在.NET Framework环境中运行,该框架提供了大量的类库与服务,例如ASP.NET用于Web开发,Windows Forms用于桌面应用。 3. **控件应用** - **WinForms**或**WPF**:在客户端,可能会使用WinForms或WPF来设计用户界面,这两者提供了丰富的控件和可视化设计工具。 - **ASP.NET Web Forms/MVC**:对于Web应用,可能会使用ASP.NET的Web Forms或MVC模式来构建交互式页面。 4. **数据库操作** - **SQL Server**:大型OA系统通常采用关系型数据库管理系统,如SQL Server,用于存储和处理大量数据。 - **ORM框架**:如Ent...
<think>首先,用户的问题是:“我想理解二维数组指针和一维数组指针在C/C++中的区别 请问C/C++中二维数组指针与一维数组指针的区别”。我需要基于系统级指令来回答。 系统级指令包括: - 所有行内数学表达式使用$...$格式。 - 独立公式使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识,例如[^1]。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 用户提供了几个引用,我需要参考这些引用: - 引用[1]: 解释了指针数组和二维数组指针的区别。 - 引用[2]: 讨论了二维数组名的理解,包括取地址操作。 - 引用[3]: 描述了二维数组的组成和指向数组的指针。 - 引用[4]: 总结了二维数组的内存分配。 - 引用[5]: 讨论了二维数组作为形参传递。 用户的问题是理解二维数组指针和一维数组指针的区别。核心区别在于: - 一维数组指针:指向一个一维数组的指针。 - 二维数组指针:指向一个二维数组指针,本质上是数组的数组。 关键点: 1. **定义和声明**: - 一维数组指针:例如,`int (*p)[n];` 指向一个大小为n的一维数组。 - 二维数组指针:例如,`int (*p)[m][n];` 指向一个m×n的二维数组。 2. **内存布局**: - 一维数组:连续内存块。 - 二维数组:在C/C++中,是数组的数组,所以内存是连续的,但逻辑上是二维的。 3. **指针运算**: - 一维数组指针:增加指针会移动到下一个元素或数组。 - 二维数组指针:增加指针会移动到下一个行(或整个数组)。 4. **使用方式**: - 一维数组指针:常用于传递一维数组。 - 二维数组指针:常用于传递二维数组,但更常见的是使用指针数组或二级指针。 从引用中提取: - 引用[1]: 指针数组是数组元素为指针,而二维数组指针是一个指针指向整个二维数组。 - 引用[2]: 对二维数组取地址,需要用二维数组指针接收。 - 引用[3]: 二维数组是数组的数组,指向数组的指针如`int (*ip)[4];`。 - 引用[4]: 动态分配的二维数组可能不是连续内存。 - 引用[5]: 二维数组作为形参时,可以用指针数组或二级指针。 回答结构: 1. **介绍概念**:简要定义一维数组指针二维数组指针。 2. **区别点**:列出关键区别,包括定义、内存、指针运算、使用场景。 3. **示例代码**:提供简单示例来展示区别。 4. **总结**:强调核心差异。 5. **生成相关问题**:基于主题生成相关问题。 使用中文回答,并确保LaTeX格式正确。 生成相关问题: - 如系统指令所示,生成2-3个相关问题。 最终回答格式: - 清晰的结构:分步骤解释。 - 引用自然添加:在相关部分末尾添加引用标识。 - 相关问题在末尾。</think>### C/C++中二维数组指针与一维数组指针的区别 在C/C++中,指针是操作数组的核心工具。一维数组指针二维数组指针在定义、内存布局、指针运算和使用方式上有本质区别。下面我将逐步解释这些差异,帮助您深入理解。 #### 1. **定义和声明** - **一维数组指针**:指向一个一维数组的指针。声明格式为 `类型 (*指针名)[长度]`,例如 `int (*p)[5];` 表示 `p` 指向一个包含5个整型元素的一维数组。这种指针只关心数组的整体结构,而不是单个元素。 - 示例代码: ```c int arr[5] = {1, 2, 3, 4, 5}; int (*p)[5] = &arr; // p 指向整个一维数组arr ``` - **二维数组指针**:指向一个二维数组指针。声明格式为 `类型 (*指针名)[行数][列数]`,例如 `int (*p)[3][4];` 表示 `p` 指向一个3行4列的二维数组二维数组本质上是“数组的数组”,因此二维数组指针指向的是一个嵌套数组结构[^3]。 - 示例代码: ```c int arr[2][3] = {{1, 2, 3}, {4, 5, 6}}; int (*p)[2][3] = &arr; // p 指向整个二维数组arr ``` - **关键区别**:一维数组指针指向一个线性数组,而二维数组指针指向一个二维表格结构。二维数组指针的声明中必须包含行和列维度,这反映了其更复杂的类型[^1][^2]。 #### 2. **内存布局** - **一维数组指针**:内存是连续的单一区块。例如,`int arr[5]` 在内存中占用连续的20字节(假设 `int` 为4字节)。指针 `p` 的地址是数组的起始地址,`p+1` 会跳过整个数组长度(20字节),指向下一个数组(如果存在)。 - 数学表示:设数组基地址为 $a$,则元素 $arr[i]$ 的地址为 $a + i \times \text{sizeof}(int)$。 - **二维数组指针**:内存也是连续的,但逻辑上分为行和列。例如,`int arr[2][3]` 占用连续24字节(2行×3列×4字节)。指针 `p` 的地址是数组的起始地址,`p+1` 会跳过整个二维数组的大小(24字节),指向下一个二维数组[^2][^4]。 - 数学表示:设数组基地址为 $a$,则元素 $arr[i][j]$ 的地址为 $a + i \times (\text{列数} \times \text{sizeof}(int)) + j \times \text{sizeof}(int)$。例如,对于 $arr[1][0]$: $$ \text{地址} = a + 1 \times (3 \times 4) + 0 \times 4 = a + 12 $$ - **关键区别**:一维数组指针的内存访问是线性的,而二维数组指针需要计算行和列偏移。动态分配的二维数组(如使用 `malloc`)可能不连续,但栈上分配的二维数组总是连续的[^4]。 #### 3. **指针运算** - **一维数组指针**:指针运算基于数组长度。例如: ```c int (*p)[5] = &arr; int *first_element = *p; // 解引用得到数组首元素地址 int second_element = (*p)[1]; // 访问数组第二个元素 ``` `p + 1` 会使指针前进一个数组长度(20字节)。 - **二维数组指针**:指针运算基于整个二维数组大小。例如: ```c int (*p)[2][3] = &arr; int (*first_row)[3] = *p; // 解引用得到第一行(一个一维数组) int element = (*p)[0][1]; // 访问第一行第二列元素 ``` `p + 1` 会使指针前进整个二维数组大小(24字节)。要访问行内元素,需先解引用为行指针[^3]。 - **关键区别**:一维数组指针的运算单位是单个数组,二维数组指针的运算单位是整个二维表格。这导致二维数组指针在遍历时更复杂,通常需要多级解引用。 #### 4. **使用场景** - **一维数组指针**:常用于传递一维数组给函数,或操作数组切片。例如: ```c void func(int (*arr)[5]) { // 操作一维数组 } ``` - **二维数组指针**:适用于传递固定维度的二维数组,但实际中更常用指针数组(如 `int *arr[]`)或二级指针(如 `int **arr`)来避免维度限制。二维数组指针在需要精确控制内存布局时有用,如图像处理[^5]。 - 示例:函数参数传递: ```c void func(int (*arr)[3][4]) { // 操作二维数组 } ``` - **关键区别**:一维数组指针简单高效,适合线性数据;二维数组指针更适合多维数据结构,但易出错。在函数参数中,二维数组常被降级为指针数组或二级指针以提高灵活性[^1][^5]。 #### 总结 - **本质区别**:一维数组指针(如 `int (*p)[n]`)指向一个线性数组,二维数组指针(如 `int (*p)[m][n]`)指向一个二维表格。前者内存连续且运算简单,后者需处理行/列偏移。 - **核心要点**: - 内存连续性:栈上数组都连续,但动态分配可能不连续[^4]。 - 类型安全:二维数组指针强制维度检查,一维指针更灵活。 - 性能:一维指针访问更快,二维指针在嵌套循环中可能引入额外计算。 如果您有具体代码示例或更多场景,我可以进一步分析!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值