F. Spreading the Wealth
| F. Spreading the Wealth |
Problem
A Communist regime is trying to redistribute wealth in a village. They have have decided to sit everyone around a circular table. First, everyone has converted all of their properties to coins of equal value, such that the total number of coins is divisible by the number of people in the village. Finally, each person gives a number of coins to the person on his right and a number coins to the person on his left, such that in the end, everyone has the same number of coins. Given the number of coins of each person, compute the minimum number of coins that must be transferred using this method so that everyone has the same number of coins.
The Input
There is a number of inputs. Each input begins with n(n<1000001), the number of people in the village. nlines follow, giving the number of coins of each person in the village, in counterclockwise order around the table. The total number of coins will fit inside an unsigned 64 bit integer.
The Output
For each input, output the minimum number of coins that must be transferred on a single line.
Sample Input
3 100 100 100 4 1 2 5 4
Sample Output
0 4
看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
=An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。
看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
=An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。
看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
=An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
const int MAXN = 1000010;
int n;
long long C[MAXN], avg;
int main()
{
int i;
while(scanf("%d",&n)!=EOF)
{
avg = 0;
for(i=1; i<=n; i++)
{
scanf("%lld",&C[i]);
avg+=C[i];
}
C[0] = 0;
avg/=n;
for(i=1; i<n; i++)
{
C[i] = C[i-1] + C[i] - avg;
}
sort(C,C+n);
long long ans = 0, x1 = C[(n-1)/2];
for(i=0; i<n; i++)
{
ans += abs(C[i] - x1);
}
printf("%lld\n", ans);
}
return 0;
}
本文深入解析了一种共产主义制度下财富再分配的算法,详细阐述了从个体到集体统一财富水平的过程。通过数学推导与直观理解,揭示了如何仅通过最小数量的财富转移,使所有参与者达到相同的财富状态。采用实际输入数据,展示了解决方案的步骤与最终输出结果,同时介绍了将最大值作为中间值选择的重要性,简化了问题为求解最小绝对和的中位数问题。
433

被折叠的 条评论
为什么被折叠?



