RocketMQ的面试题

RocketMQ中的Topic不同于JMS的queue,每个Topic可对应多个queue。消息消费后不会立即删除,持久化在CommitLog中。消费模式包括集群消费和广播消费,均采用pull方式,通过长轮询机制模拟push。RocketMQ通过分布式存储实现负载均衡,Consumer与queue的分配会尽可能平均。消息重复消费可能由于ACK未发送或网络问题,可通过数据库、Map或Redis避免。RocketMQ通过特定策略保证顺序消费,并有多层次措施防止消息丢失,如同步刷盘、消费者确认等。堆积消息可通过增加Consumer处理,必要时可转移消息到新Topic。RocketMQ的分布式事务通过HalfMessage机制实现,保证最终一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RocketMQ中的Topic和JMS的queue有什么区别?

queue就是来源于数据结构的FIFO队列。而Topic是个抽象的概念,每个Topic底层对应N个queue,而数据也真实存在queue上的。

RocketMQ Broker中的消息被消费后会立即删除吗?

不会,每条消息都会持久化到CommitLog中,每个Consumer连接到Broker后会维持消费进度信息,当有消息消费后只是当前Consumer的消费进度(CommitLog的offset)更新了。

追问:那么消息会堆积吗?什么时候清理过期消息?
4.6版本默认48小时后会删除不再使用的CommitLog文件

  • 检查这个文件最后访问时间
  • 判断是否大于过期时间
  • 指定时间删除,默认凌晨4点

RocketMQ消费模式有几种?

消费模型由Consumer决定,消费维度为Topic。

  • 集群消费

    1.一条消息只会被同Group中的一个Consumer消费

    2.多个Group同时消费一个Topic时,每个Group都会有一个Consumer消费到数据

  • 广播消费

    消息将对一 个Consumer Group 下的各个 Consumer 实例都消费一遍。即即使这些
    Consumer 属于同一个Consumer Group ,消息也会被 Consumer Group 中的每个 Consumer
    都消费一次。

消费消息是push还是pull?

RocketMQ没有真正意义的push,都是pull,虽然有push类,但实际底层实现采用的是长轮询机制,即拉取方式

broker端属性 longPollingEnable 标记是否开启长轮询。默认开启

追问:为什么要主动拉取消息而不使用事件监听方式?

事件驱动方式是建立好长连接,由事件(发送数据)的方式来实时推送。

如果broker主动推送消息的话有可能push速度快,消费速度慢的情况,那么就会造成消息在consumer端堆积过多,同时又不能被其他consumer消费的情况。而pull的方式可以根据当前自身情况来pull,不会造成过多的压力而造成瓶颈。所以采取了pull的方式。

broker如何处理拉取请求的?

Consumer首次请求Broker

Broker中是否有符合条件的消息
有 ->
    1、响应Consumer
    2、等待下次Consumer的请求
没有
    1、DefaultMessageStore#ReputMessageService#run方法
    2、PullRequestHoldService 来Hold连接,每个5s执行一次检查pullRequestTable有没有消息,有的话立即推送
    3、每隔1ms检查commitLog中是否有新消息,有的话写入到pullRequestTable
    4、当有新消息的时候返回请求
    5、挂起consumer的请求,即不断开连接,也不返回数据
    6、使用consumer的offset,

RocketMQ如何做负载均衡?

通过Topic在多Broker中分布式存储实现。

producer端

发送端指定message queue发送消息到相应的broker,来达到写入时的负载均衡

  • 提升写入吞吐量,当多个producer同时向一个broker写入数据的时候,性能会下降
  • 消息分布在多broker中,为负载消费做准备

默认策略是随机选择:

  • producer维护一个index
  • 每次取节点会自增
  • index向所有broker个数取余
  • 自带容错策略

其他实现:

  • SelectMessageQueueByHash
    hash的是传入的args
  • SelectMessageQueueByRandom
  • SelectMessageQueueByMachineRoom 没有实现

也可以自定义实现MessageQueueSelector接口中的select方法

MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Object arg);
consumer端

采用的是平均分配算法来进行负载均衡。

其他负载均衡算法

平均分配策略(默认)(AllocateMessageQueueAveragely) 环形分配策略(AllocateMessageQueueAveragelyByCircle) 手动配置分配策略(AllocateMessageQueueByConfig) 机房分配策略(AllocateMessageQueueByMachineRoom) 一致性哈希分配策略(AllocateMessageQueueConsistentHash) 靠近机房策略(AllocateMachineRoomNearby)

追问:当消费负载均衡consumer和queue不对等的时候会发生什么?

Consumer和queue会优先平均分配,如果Consumer少于queue的个数,则会存在部分Consumer消费多个queue的情况,如果Consumer等于queue的个数,那就是一个Consumer消费一个queue,如果Consumer个数大于queue的个数,那么会有部分Consumer空余出来,白白的浪费了。

消息重复消费

影响消息正常发送和消费的重要原因是网络的不确定性。

引起重复消费的原因

ACK

正常情况下在consumer真正消费完消息后应该发送ack,通知broker该消息已正常消费,从queue中剔除

当ack因为网络原因无法发送到broker,broker会认为词条消息没有被消费,此后会开启消息重投机制把消息再次投递到consumer

消费模式

在CLUSTERING模式下,消息在broker中会保证相同group的consumer消费一次,但是针对不同group的consumer会推送多次

解决方案

数据库表

处理消息前,使用消息主键在表中带有约束的字段中insert

Map

单机时可以使用map ConcurrentHashMap -> putIfAbsent guava cache

Redis

分布式锁搞起来。

如何让RocketMQ保证消息的顺序消费

首先多个queue只能保证单个queue里的顺序,queue是典型的FIFO,天然顺序。多个queue同时消费是无法绝对保证消息的有序性的。所以总结如下:

同一topic,同一个QUEUE,发消息的时候一个线程去发送消息,消费的时候 一个线程去消费一个queue里的消息。

怎么保证消息发到同一个queue?

Rocket MQ给我们提供了MessageQueueSelector接口,可以自己重写里面的接口,实现自己的算法,举个最简单的例子:判断i % 2 == 0,那就都放到queue1里,否则放到queue2里。

for (int i = 0; i < 5; i++) {
    Message message = new Message("orderTopic", ("hello!" + i).getBytes());
    producer.send(
        // 要发的那条消息
        message,
        // queue 选择器 ,向 topic中的哪个queue去写消息
        new MessageQueueSelector() {
            // 手动 选择一个queue
            @Override
            public MessageQueue select(
                // 当前topic 里面包含的所有queue
                List<MessageQueue> mqs,
                // 具体要发的那条消息
                Message msg,
                // 对应到 send() 里的 args,也就是2000前面的那个0
                Object arg) {
                // 向固定的一个queue里写消息,比如这里就是向第一个queue里写消息
                if (Integer.parseInt(arg.toString()) % 2 == 0) {
                    return mqs.get(0);
                } else {
                    return mqs.get(1);
                }
            }
        },
        // 自定义参数:0
        // 2000代表2000毫秒超时时间
        i, 2000);
}

RocketMQ如何保证消息不丢失

首先在如下三个部分都可能会出现丢失消息的情况:

  • Producer端
  • Broker端
  • Consumer端
Producer端如何保证消息不丢失
  • 采取send()同步发消息,发送结果是同步感知的。

  • 发送失败后可以重试,设置重试次数。默认3次。

    producer.setRetryTimesWhenSendFailed(10);

  • 集群部署,比如发送失败了的原因可能是当前Broker宕机了,重试的时候会发送到其他Broker上。

Broker端如何保证消息不丢失
  • 修改刷盘策略为同步刷盘。默认情况下是异步刷盘的。

    flushDiskType = SYNC_FLUSH

  • 集群部署,主从模式,高可用。

Consumer端如何保证消息不丢失
  • 完全消费正常后在进行手动ack确认。

rocketMQ的消息堆积如何处理

首先要找到是什么原因导致的消息堆积,是Producer太多了,Consumer太少了导致的还是说其他情况,总之先定位问题。

然后看下消息消费速度是否正常,正常的话,可以通过上线更多consumer临时解决消息堆积问题

追问:如果Consumer和Queue不对等,上线了多台也在短时间内无法消费完堆积的消息怎么办?

  • 准备一个临时的topic
  • queue的数量是堆积的几倍
  • queue分布到多Broker中
  • 上线一台Consumer做消息的搬运工,把原来Topic中的消息挪到新的Topic里,不做业务逻辑处理,只是挪过去
  • 上线N台Consumer同时消费临时Topic中的数据
  • 改bug
  • 恢复原来的Consumer,继续消费之前的Topic

追问:堆积时间过长消息超时了?

RocketMQ中的消息只会在commitLog被删除的时候才会消失,不会超时。也就是说未被消费的消息不会存在超时删除这情况。

追问:堆积的消息会不会进死信队列?

不会,消息在消费失败后会进入重试队列(%RETRY%+ConsumerGroup),18次(默认18次,网上所有文章都说是16次,无一例外。但是我没搞懂为啥是16次,这不是18个时间吗 ?)才会进入死信队列(%DLQ%+ConsumerGroup)。

RocketMQ在分布式事务支持这块机制的底层原理?

布式系统中的事务可以使用TCC(Try、Confirm、Cancel)、2pc来解决分布式系统中的消息原子性

RocketMQ 4.3+提供分布事务功能,通过 RocketMQ 事务消息能达到分布式事务的最终一致

RocketMQ实现方式:

Half Message:
预处理消息,当broker收到此类消息后,会存储到RMQ_SYS_TRANS_HALF_TOPIC的消息消费队列中

检查事务状态:
Broker会开启一个定时任务,消费RMQ_SYS_TRANS_HALF_TOPIC队列中的消息,每次执行任务会向消息发送者确认事务执行状态(提交、回滚、未知),如果是未知,Broker会定时去回调在重新检查。

超时:
如果超过回查次数,默认回滚消息。

也就是他并未真正进入Topic的queue,而是用了临时queue来放所谓的half message,等提交事务后才会真正的将half message转移到topic下的queue。

如果让你来动手实现一个分布式消息中间件,整体架构你会如何设计实现?

  • 需要考虑能快速扩容、天然支持集群
  • 持久化的姿势
  • 高可用性
  • 数据0丢失的考虑
  • 服务端部署简单、client端使用简单

高吞吐量下如何优化生产者和消费者的性能?

开发
  • 同一group下,多机部署,并行消费

  • 单个Consumer提高消费线程个数

  • 批量消费

    消息批量拉取
    业务逻辑批量处理

运维
  • 网卡调优
  • jvm调优
  • 多线程与cpu调优
  • Page Cache

再说说RocketMQ 是如何保证数据的高容错性的?

  • 在不开启容错的情况下,轮询队列进行发送,如果失败了,重试的时候过滤失败的Broker
  • 如果开启了容错策略,会通过RocketMQ的预测机制来预测一个Broker是否可用
  • 如果上次失败的Broker可用那么还是会选择该Broker的队列
  • 如果上述情况失败,则随机选择一个进行发送
  • 在发送消息的时候会记录一下调用的时间与是否报错,根据该时间去预测broker的可用时间

任何一台Broker突然宕机了怎么办?

Broker主从架构以及多副本策略。Master收到消息后会同步给Slave,这样一条消息就不止一份了,Master宕机了还有slave中的消息可用,保证了MQ的可靠性和高可用性。而且Rocket MQ4.5.0开始就支持了Dlegder模式,基于raft的,做到了真正意义的HA。

Broker把自己的信息注册到哪个NameServer上?

因为Broker会向所有的NameServer上注册自己的信息,而不是某一个,是每一个,全部!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值