归并排序&快速排序

本文详细介绍了归并排序的原理,包括其利用分治策略进行递归排序的过程,强调其稳定性的关键在于合并操作。同时,讨论了归并排序的时间复杂度为O(nlogn),空间复杂度为O(n),以及它与快速排序的比较,尤其是非原地排序的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

归并排序:如果要排序一个数组,先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

归并排序使用的就是分治思想。分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。分治算法一般都是用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧,这两者并不冲突。

归并排序是稳定的排序算法吗?

归并排序稳不稳定关键要看 merge() 函数,也就是两个有序子数组合并成一个有序数组的那部分代码。在合并的过程中,如果 A[p...q]和 A[q+1...r]之间有值相同的元素,那我们可以像伪代码中那样,先把 A[p...q]中的元素放入 tmp 数组。这样就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一个稳定的排序算法。

归并排序的时间复杂度是多少?

不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。

T(1) = C;   n=1时,只需要常量级的执行时间,所以表示为C。

T(n) = 2*T(n/2) + n; n>1

T(n) = 2^kT(n/2^k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)。

归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)。

归并排序的空间复杂度是多少?

在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。

 

归并排序的处理过程是由下到上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上到下的,先分区,然后再处理子问题。归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。

快速排序算法虽然最坏情况下的时间复杂度是 O(n2),但是平均情况下时间复杂度都是 O(nlogn)。不仅如此,快速排序算法时间复杂度退化到 O(n2) 的概率非常小,我们可以通过合理地选择 pivot 来避免这种情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值