////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////Cpp文件//////////////////////////////////////////////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------
// File: Tutorial07.cpp
//
// This application demonstrates texturing
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//--------------------------------------------------------------------------------------
#include <windows.h>
#include "DXHeader\D3D11.h"
#include "DXHeader\D3DX11.h"
#include "DXHeader\D3Dcompiler.h"
#include "DXHeader\xnamath.h"
#include "resource.h"
//包含静态链接库
#pragma comment(lib, "d3dx11d.lib")
//--------------------------------------------------------------------------------------
// Structures
//--------------------------------------------------------------------------------------
//-----------------------------------------------------
// 因为CPU和GPU是通过发送消息来进行异构编程的
// 所以CPP文件中和HLSL中的变量格式应该一致
//-----------------------------------------------------
struct SimpleVertex
{
XMFLOAT3 Pos; // 顶点坐标
XMFLOAT2 Tex; // 纹理坐标
};
struct CBNeverChanges
{
XMMATRIX mView; // 用于视图变换的矩阵
};
struct CBChangeOnResize
{
XMMATRIX mProjection; // 用于透视变换的矩阵
};
struct CBChangesEveryFrame
{
XMMATRIX mWorld;
XMFLOAT4 vMeshColor;
};
//--------------------------------------------------------------------------------------
// Global Variables
//--------------------------------------------------------------------------------------
HINSTANCE g_hInst = NULL;
HWND g_hWnd = NULL;
// ------------------------------------
// D3D_DIRVER_TYPE:
//
//--------------------------------------
D3D_DRIVER_TYPE g_driverType = D3D_DRIVER_TYPE_NULL;
D3D_FEATURE_LEVEL g_featureLevel = D3D_FEATURE_LEVEL_11_0;
//----------------------------------------------------------------------------------------------------------
// ID3D11Device ID3D11DeviceContext IDXGISwapChain
// 使用D3D时必须要的三个接口:
// ID3D11Device: 设备接口: 用于创建所有(是所有)设备相关的资源,例如:深度模板缓存,纹理缓存
// 着色器(VertexShader顶点着色器,HullShader外壳着色器,DomainShader域着色器,
// GeometryShader几何着色器,ComputeShader计算着色器,PixelShader像素着色器
// )等等
// ID3D11DeviceContext: 设备上下文:用于D3D的渲染:
// 1、将编译好了的HLSL文件通过**SetShader(VSSetShader()顶点着色器、HSSetShader()外壳着色器、
// DSSetShader()域着色器、GSSetShader()几何着色器、CSSetShader()计算着色器、PixelShader()像素着色器
// )绑定到固定流水管线上
// 2、将CPU的变量与HLSL中的变量关联:**SetConstantBuffer(VSSetConstantBuffer、HSSetConstantBuffer、
// DSSetContantBuffer, GSSetConstantBuffer,CSSetConstantBuffer,PSSetConstantBuffer
// )。我看过一本书《并行程序设计原理》中我讲了,异构编程(CPU和GPU是异构的),而异构编程的实现有两种方式:
// A:共享存储(即共享全局变量) B:消息传递(即将处理好了的数据通过消息机制传递到另一个处理器)。
// 而明显HLSL和CPP中是通过共享变量来实现的,而这里是在CPP文件中使用UpdateSubresource()函数来更改CPU
// 中的数据的,再在渲染时使用**SetConstantBuffer来改变固定流水管线中的数据,而HLSL中的变量是与固定流水管线
// 一致的,因此达到了数据一致!
// 3、同2中一样:纹理的采样是通过PSSetSamplers()函数来将Cpp文件中的变量和HLSL中的变量绑定的
// 4、因为ID3D11DeviceContext:进行了渲染的所有方面,所以还有很多! 我只是说了CPP和GPU的数据交换。
// IDXGISwapChain: 交换链。IDXGISwapChain应该封装了一块缓冲区,用来存放渲染的结果。也封装了一些成员函数,例如:Present()
// 而最终将数据呈现出来是调用Present()函数。然而最重要的是SwapChain中数据的来源:IDXGISwapChain::GetBuffer()和
// ID3D11DeviceContext::OMSetRenderTargets(), ID3D11DeviceContext::CreateRenderTargetView()。使用GetBuffer()来得到SwapChain中的缓存,使用OMSetRenderTargets()
// 将固定流水管线渲染的结果流转到SwapChain中的,其中CreateRenderTargetView()函数给SwapChain的缓存创建一个过渡桥梁。
//-----------------------------------------------------------------------------------------------------------------------------------------------------------
ID3D11Device* g_pd3dDevice = NULL; // 用于创建D3D的所有资源
ID3D11DeviceContext* g_pImmediateContext = NULL;// 渲染的方方面面
IDXGISwapChain* g_pSwapChain = NULL; // 交换链,用来容装数据和呈现到显示器
ID3D11RenderTargetView* g_pRenderTargetView = NULL; // SwapChain的过渡桥梁
ID3D11Texture2D* g_pDepthStencil = NULL;//本质就是一块纹理: 深度模板,用来进行被遮挡物的剔除
ID3D11DepthStencilView* g_pDepthStencilView = NULL; //View:相当于句柄
ID3D11VertexShader* g_pVertexShader = NULL;//顶点着色器接口
ID3D11PixelShader* g_pPixelShader = NULL;//像素着色器接口
ID3D11InputLayout* g_pVertexLayout = NULL;//输入布局接口,控制绘制的格式
ID3D11Buffer* g_pVertexBuffer = NULL;//缓存
ID3D11Buffer* g_pIndexBuffer = NULL;
ID3D11Buffer* g_pCBNeverChanges = NULL;
ID3D11Buffer* g_pCBChangeOnResize = NULL;
ID3D11Buffer* g_pCBChangesEveryFrame = NULL;
ID3D11ShaderResourceView* g_pTextureRV = NULL; // 着色器资源视图, 用来访问着色器中的资源,就像Win32中的句柄一样
ID3D11SamplerState* g_pSamplerLinear = NULL; //纹理采样
XMMATRIX g_World;//将局部坐标转换到世界坐标中,一般在Vertex Shader中进行
XMMATRIX g_View;//视图变换,将世界坐标转换到视图坐标。一般在VertexShader中进行
XMMATRIX g_Projection;//投影变换,将3D转为2D,一般在VertexShader中进行
XMFLOAT4 g_vMeshColor( 0.7f, 0.7f, 0.7f, 1.0f );
//--------------------------------------------------------------------------------------
// Forward declarations
//--------------------------------------------------------------------------------------
HRESULT InitWindow( HINSTANCE hInstance, int nCmdShow );
HRESULT InitDevice();
void CleanupDevice();
LRESULT CALLBACK WndProc( HWND, UINT, WPARAM, LPARAM );
void Render();
//--------------------------------------------------------------------------------------
// Entry point to the program. Initializes everything and goes into a message processing
// loop. Idle time is used to render the scene.
//--------------------------------------------------------------------------------------
int WINAPI wWinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, LPWSTR lpCmdLine, int nCmdShow )
{
UNREFERENCED_PARAMETER( hPrevInstance );
UNREFERENCED_PARAMETER( lpCmdLine );
if( FAILED( InitWindow( hInstance, nCmdShow ) ) )
return 0;
if( FAILED( InitDevice() ) )
{
CleanupDevice();
return 0;
}
// Main message loop
MSG msg = {0};
while( WM_QUIT != msg.message )
{
if( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) )
{
TranslateMessage( &msg );
DispatchMessage( &msg );
}
else
{
Render();
}
}
CleanupDevice();
return ( int )msg.wParam;
}
//--------------------------------------------------------------------------------------
// Register class and create window
//--------------------------------------------------------------------------------------
HRESULT InitWindow( HINSTANCE hInstance, int nCmdShow )
{
// Register class
WNDCLASSEX wcex;
wcex.cbSize = sizeof( WNDCLASSEX );
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = WndProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = LoadIcon( hInstance, ( LPCTSTR )IDI_TUTORIAL1 );
wcex.hCursor = LoadCursor( NULL, IDC_ARROW );
wcex.hbrBackground = ( HBRUSH )( COLOR_WINDOW + 1 );
wcex.lpszMenuName = NULL;
wcex.lpszClassName = L"TutorialWindowClass";
wcex.hIconSm = LoadIcon( wcex.hInstance, ( LPCTSTR )IDI_TUTORIAL1 );
if( !RegisterClassEx( &wcex ) )
return E_FAIL;
// Create window
g_hInst = hInstance;
RECT rc = { 0, 0, 640, 480 };
AdjustWindowRect( &rc, WS_OVERLAPPEDWINDOW, FALSE );
g_hWnd = CreateWindow( L"TutorialWindowClass", L"Direct3D 11 Tutorial 7", WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT, rc.right - rc.left, rc.bottom - rc.top, NULL, NULL, hInstance,
NULL );
if( !g_hWnd )
return E_FAIL;
ShowWindow( g_hWnd, nCmdShow );
return S_OK;
}
//--------------------------------------------------------------------------------------
// Helper for compiling shaders with D3DX11
// 纹理的使用三个步骤:
// 1、编译HLSL得到编译的结果
// 2、调用ID3D11Device::CreateVertexShader(), CreateHullShader(),CreateDomainShader(),
// CreateGeometryShader(),CreateComputeShader(),createPixelShader()创建着色器
// 3、将创建的着色器与固定流水管线绑定:调用ID3D11DeviceContext::VSSetShader(), PSSetShader()等
//--------------------------------------------------------------------------------------
HRESULT CompileShaderFromFile( WCHAR* szFileName, // HLSL文件名称
LPCSTR szEntryPoint, // HLSL文件中的函数,就像Cpp文件中的WinMain()函数一样
LPCSTR szShaderModel, // 第几代HLSL编译器
ID3DBlob** ppBlobOut // 传出参数,即输出结果
)
{
HRESULT hr = S_OK;
DWORD dwShaderFlags = D3DCOMPILE_ENABLE_STRICTNESS;
#if defined( DEBUG ) || defined( _DEBUG )
// Set the D3DCOMPILE_DEBUG flag to embed debug information in the shaders.
// Setting this flag improves the shader debugging experience, but still allows
// the shaders to be optimized and to run exactly the way they will run in
// the release configuration of this program.
dwShaderFlags |= D3DCOMPILE_DEBUG;
#endif
ID3DBlob* pErrorBlob;
hr = D3DX11CompileFromFile( szFileName, NULL, NULL, szEntryPoint, szShaderModel,
dwShaderFlags, 0, NULL, ppBlobOut, &pErrorBlob, NULL );
if( FAILED(hr) )
{
if( pErrorBlob != NULL )
OutputDebugStringA( (char*)pErrorBlob->GetBufferPointer() );
if( pErrorBlob ) pErrorBlob->Release();
return hr;
}
if( pErrorBlob ) pErrorBlob->Release();
return S_OK;
}
//--------------------------------------------------------------------------------------
// Create Direct3D device and swap chain
//--------------------------------------------------------------------------------------
HRESULT InitDevice()
{
HRESULT hr = S_OK;
RECT rc;
GetClientRect( g_hWnd, &rc );
UINT width = rc.right - rc.left;
UINT height = rc.bottom - rc.top;
UINT createDeviceFlags = 0;
#ifdef _DEBUG
createDeviceFlags |= D3D11_CREATE_DEVICE_DEBUG;
#endif
D3D_DRIVER_TYPE driverTypes[] =
{
D3D_DRIVER_TYPE_HARDWARE,
D3D_DRIVER_TYPE_WARP,
D3D_DRIVER_TYPE_REFERENCE,
};
UINT numDriverTypes = ARRAYSIZE( driverTypes );
D3D_FEATURE_LEVEL featureLevels[] =
{
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
};
UINT numFeatureLevels = ARRAYSIZE( featureLevels );
DXGI_SWAP_CHAIN_DESC sd;
ZeroMemory( &sd, sizeof( sd ) );
sd.BufferCount = 1 * 2;
sd.BufferDesc.Width = width;
sd.BufferDesc.Height = height;
sd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
sd.BufferDesc.RefreshRate.Numerator = 60;
sd.BufferDesc.RefreshRate.Denominator = 1;
sd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
sd.OutputWindow = g_hWnd;
sd.SampleDesc.Count = 1;
sd.SampleDesc.Quality = 0;
sd.Windowed = TRUE;
for( UINT driverTypeIndex = 0; driverTypeIndex < numDriverTypes; driverTypeIndex++ )
{
g_driverType = driverTypes[driverTypeIndex];
//----------------------------------------------------------
// 一口气将D3D中的核心部分都创建了:
// ID3D11Device
// ID3D11DeviceContext
// IDXGISwapChain
//----------------------------------------------------------
hr = D3D11CreateDeviceAndSwapChain( NULL,
g_driverType,
NULL,
createDeviceFlags,
featureLevels,
numFeatureLevels,
D3D11_SDK_VERSION,
&sd,
&g_pSwapChain, // 传出SwapChain
&g_pd3dDevice, // 传出Device
&g_featureLevel,
&g_pImmediateContext // 传出DeviceContext
);
if( SUCCEEDED( hr ) )
break;
}
if( FAILED( hr ) )
return hr;
// Create a render target view
ID3D11Texture2D* pBackBuffer = NULL;
//--------------------------------------------------------------
// 获取SwapChain的交换链:
// 以便将SwapChain中的缓存与固定流水管线的最终结果绑定
//-------------------------------------------------------------
hr = g_pSwapChain->GetBuffer( 0, __uuidof( ID3D11Texture2D ), ( LPVOID* )&pBackBuffer );
if( FAILED( hr ) )
return hr;
//----------------------------------------------------------------------------
// 注意:还只是创建,并没有绑定到固定流水管线上,绑定在下面
// A:创建一个渲染目标视图,B:同时实现将SwapChain中的缓存与g_pRenderTargetView绑定
//----------------------------------------------------------------------------
hr = g_pd3dDevice->CreateRenderTargetView( pBackBuffer, NULL, &g_pRenderTargetView );
pBackBuffer->Release();
if( FAILED( hr ) )
return hr;
// Create depth stencil texture
D3D11_TEXTURE2D_DESC descDepth;
ZeroMemory( &descDepth, sizeof(descDepth) );
descDepth.Width = width;
descDepth.Height = height;
descDepth.MipLevels = 1;
descDepth.ArraySize = 1;
descDepth.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
descDepth.SampleDesc.Count = 1;
descDepth.SampleDesc.Quality = 0;
descDepth.Usage = D3D11_USAGE_DEFAULT;
descDepth.BindFlags = D3D11_BIND_DEPTH_STENCIL;
descDepth.CPUAccessFlags = 0;
descDepth.MiscFlags = 0;
hr = g_pd3dDevice->CreateTexture2D( &descDepth, NULL, &g_pDepthStencil );
if( FAILED( hr ) )
return hr;
// Create the depth stencil view
D3D11_DEPTH_STENCIL_VIEW_DESC descDSV;
ZeroMemory( &descDSV, sizeof(descDSV) );
descDSV.Format = descDepth.Format;
descDSV.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
descDSV.Texture2D.MipSlice = 0;
// 创建深度模板缓存,以便深度剔除
hr = g_pd3dDevice->CreateDepthStencilView( g_pDepthStencil, &descDSV, &g_pDepthStencilView );
if( FAILED( hr ) )
return hr;
//-------------------------------------------------------------------
// 将深度模板和渲染目标视图绑定到固定流水管线上
// 从而是实现ID3D11DeviceContext和IDXGISwapChain绑定
// 使得数据从固定流水管线流到交换链中。
//:这是数据流向交换链的核心!!
//----------------------------------------------------------------
g_pImmediateContext->OMSetRenderTargets( 1, &g_pRenderTargetView, g_pDepthStencilView );
// Setup the viewport
D3D11_VIEWPORT vp;
vp.Width = (FLOAT)width;
vp.Height = (FLOAT)height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
g_pImmediateContext->RSSetViewports( 1, &vp ); // 设置视口的大小
// Compile the vertex shader
ID3DBlob* pVSBlob = NULL;
hr = CompileShaderFromFile( L"Tutorial07.fx", "VS", "vs_4_0", &pVSBlob ); // 编译顶点着色器
if( FAILED( hr ) )
{
MessageBox( NULL,
L"The FX file cannot be compiled. Please run this executable from the directory that contains the FX file.", L"Error", MB_OK );
return hr;
}
// Create the vertex shader
//---------------------------------------------------------
// 创建顶点着色器(当然一切皆由ID3D11Device创建)
// --------------------------------------------------------
hr = g_pd3dDevice->CreateVertexShader( pVSBlob->GetBufferPointer(), pVSBlob->GetBufferSize(), NULL, &g_pVertexShader );
if( FAILED( hr ) )
{
pVSBlob->Release();
return hr;
}
// Define the input layout
D3D11_INPUT_ELEMENT_DESC layout[] =
{
//--------------------------------------
// 因为CPU和GPU是通过消息传递来实现异构编程的,
// 所以cpp和hlsl中的数据流格式要一致
//--------------------------------------
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
UINT numElements = ARRAYSIZE( layout );
// Create the input layout
// 创建输入布局
hr = g_pd3dDevice->CreateInputLayout( layout,
numElements,
pVSBlob->GetBufferPointer(),
pVSBlob->GetBufferSize(),
&g_pVertexLayout
);
pVSBlob->Release();
if( FAILED( hr ) )
return hr;
// Set the input layout
// 将输入布局绑定到固定流水管线上
g_pImmediateContext->IASetInputLayout( g_pVertexLayout );
// Compile the pixel shader
ID3DBlob* pPSBlob = NULL;
// 编译像素着色器
hr = CompileShaderFromFile( L"Tutorial07.fx", "PS", "ps_4_0", &pPSBlob );
if( FAILED( hr ) )
{
MessageBox( NULL,
L"The FX file cannot be compiled. Please run this executable from the directory that contains the FX file.", L"Error", MB_OK );
return hr;
}
// Create the pixel shader
// 创建像素着色器,一切皆由ID3D11Device创建
hr = g_pd3dDevice->CreatePixelShader( pPSBlob->GetBufferPointer(),
pPSBlob->GetBufferSize(),
NULL,
&g_pPixelShader
);
pPSBlob->Release();
if( FAILED( hr ) )
return hr;
// Create vertex buffer
SimpleVertex vertices[] =
{// 创建绘制图形的所有顶点,也可以从3DxMax中导入模型
{ XMFLOAT3( -1.0f, 1.0f, -1.0f ), XMFLOAT2( 0.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, 1.0f, -1.0f ), XMFLOAT2( 1.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, 1.0f, 1.0f ), XMFLOAT2( 1.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, 1.0f, 1.0f ), XMFLOAT2( 0.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, -1.0f, -1.0f ), XMFLOAT2( 0.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, -1.0f, -1.0f ), XMFLOAT2( 1.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, -1.0f, 1.0f ), XMFLOAT2( 1.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, -1.0f, 1.0f ), XMFLOAT2( 0.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, -1.0f, 1.0f ), XMFLOAT2( 0.0f, 0.0f ) },
{ XMFLOAT3( -1.0f, -1.0f, -1.0f ), XMFLOAT2( 1.0f, 0.0f ) },
{ XMFLOAT3( -1.0f, 1.0f, -1.0f ), XMFLOAT2( 1.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, 1.0f, 1.0f ), XMFLOAT2( 0.0f, 1.0f ) },
{ XMFLOAT3( 1.0f, -1.0f, 1.0f ), XMFLOAT2( 0.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, -1.0f, -1.0f ), XMFLOAT2( 1.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, 1.0f, -1.0f ), XMFLOAT2( 1.0f, 1.0f ) },
{ XMFLOAT3( 1.0f, 1.0f, 1.0f ), XMFLOAT2( 0.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, -1.0f, -1.0f ), XMFLOAT2( 0.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, -1.0f, -1.0f ), XMFLOAT2( 1.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, 1.0f, -1.0f ), XMFLOAT2( 1.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, 1.0f, -1.0f ), XMFLOAT2( 0.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, -1.0f, 1.0f ), XMFLOAT2( 0.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, -1.0f, 1.0f ), XMFLOAT2( 1.0f, 0.0f ) },
{ XMFLOAT3( 1.0f, 1.0f, 1.0f ), XMFLOAT2( 1.0f, 1.0f ) },
{ XMFLOAT3( -1.0f, 1.0f, 1.0f ), XMFLOAT2( 0.0f, 1.0f ) },
};
D3D11_BUFFER_DESC bd;
ZeroMemory( &bd, sizeof(bd) );
bd.Usage = D3D11_USAGE_DEFAULT;
bd.ByteWidth = sizeof( SimpleVertex ) * 24;
bd.BindFlags = D3D11_BIND_VERTEX_BUFFER; // 说明缓冲区的作用
bd.CPUAccessFlags = 0;
D3D11_SUBRESOURCE_DATA InitData;
ZeroMemory( &InitData, sizeof(InitData) );
InitData.pSysMem = vertices;
hr = g_pd3dDevice->CreateBuffer( &bd, &InitData, &g_pVertexBuffer );
if( FAILED( hr ) )
return hr;
// Set vertex buffer
UINT stride = sizeof( SimpleVertex );
UINT offset = 0;
// 设置输入的缓存数据
g_pImmediateContext->IASetVertexBuffers( 0, 1, &g_pVertexBuffer, &stride, &offset );
// Create index buffer
// Create vertex buffer
WORD indices[] =
{// 顶点的索引,D3D这样设计可以是减少内存的使用,聪明吧!
3,1,0,
2,1,3,
6,4,5,
7,4,6,
11,9,8,
10,9,11,
14,12,13,
15,12,14,
19,17,16,
18,17,19,
22,20,21,
23,20,22
};
bd.Usage = D3D11_USAGE_DEFAULT;
bd.ByteWidth = sizeof( WORD ) * 36;
bd.BindFlags = D3D11_BIND_INDEX_BUFFER; // 缓存的作用
bd.CPUAccessFlags = 0;
InitData.pSysMem = indices;
hr = g_pd3dDevice->CreateBuffer( &bd, &InitData, &g_pIndexBuffer );
if( FAILED( hr ) )
return hr;
// Set index buffer
// 设置顶点的索引
g_pImmediateContext->IASetIndexBuffer( g_pIndexBuffer, DXGI_FORMAT_R16_UINT, 0 );
// Set primitive topology
// 设置固定管线中的输入布局,可以确定顶点着色器中输入的是什么了!
g_pImmediateContext->IASetPrimitiveTopology( D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST );
// Create the constant buffers
bd.Usage = D3D11_USAGE_DEFAULT;
bd.ByteWidth = sizeof(CBNeverChanges); // 其实:有的时候结构体不仅可以创建变量,还可以用来对一块内存进行描述
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
bd.CPUAccessFlags = 0;
hr = g_pd3dDevice->CreateBuffer( &bd, NULL, &g_pCBNeverChanges );
if( FAILED( hr ) )
return hr;
bd.ByteWidth = sizeof(CBChangeOnResize);
hr = g_pd3dDevice->CreateBuffer( &bd, NULL, &g_pCBChangeOnResize );
if( FAILED( hr ) )
return hr;
bd.ByteWidth = sizeof(CBChangesEveryFrame);
hr = g_pd3dDevice->CreateBuffer( &bd, NULL, &g_pCBChangesEveryFrame );
if( FAILED( hr ) )
return hr;
// Load the Texture
// 导入纹理,并给纹理创建一个视图(句柄)
// 其实我也不太理解,好像内存中的数据必须创建一个视图句柄,才可以在D3D中使用,并于HLSL中的纹理变量绑定
hr = D3DX11CreateShaderResourceViewFromFile( g_pd3dDevice,
L"seafloor.dds",
NULL,
NULL,
&g_pTextureRV,
NULL
);
if( FAILED( hr ) )
return hr;
// Create the sample state
// 纹理采样方式
D3D11_SAMPLER_DESC sampDesc;
ZeroMemory( &sampDesc, sizeof(sampDesc) );
sampDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; // 过滤
sampDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP; //U的采样 超过范围就重复
sampDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
sampDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
sampDesc.ComparisonFunc = D3D11_COMPARISON_NEVER; // 比较函数,最终该像素能否通过
sampDesc.MinLOD = 0;
sampDesc.MaxLOD = D3D11_FLOAT32_MAX;
// ID3D11Device: 只是创建资源,最后还要绑定到ID3D11DeviceContext才行
hr = g_pd3dDevice->CreateSamplerState( &sampDesc, &g_pSamplerLinear );
if( FAILED( hr ) )
return hr;
// Initialize the world matrices
// 1.0 0 0 0
// 0 1.0 0 0
// 0 0 1.0 0
// 0 0 0 1.0
g_World = XMMatrixIdentity(); // 单位矩阵, 设置世界变换
// Initialize the view matrix
XMVECTOR Eye = XMVectorSet( 0.0f, 3.0f, -6.0f, 0.0f );
XMVECTOR At = XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f );
XMVECTOR Up = XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f );
g_View = XMMatrixLookAtLH( Eye, At, Up ); // 设置视图投影矩阵
CBNeverChanges cbNeverChanges;
cbNeverChanges.mView = XMMatrixTranspose( g_View );
// 修改g_pCBNeverChanges变量, 而g_pCBNeverChanges与hlsl中的变量对应
g_pImmediateContext->UpdateSubresource( g_pCBNeverChanges, 0, NULL, &cbNeverChanges, 0, 0 );
// Initialize the projection matrix
// 投影矩阵
g_Projection = XMMatrixPerspectiveFovLH( XM_PIDIV4, width / (FLOAT)height, 0.01f, 100.0f );
CBChangeOnResize cbChangesOnResize;
cbChangesOnResize.mProjection = XMMatrixTranspose( g_Projection );
//g_pCBChangesOnResize与hlsl中的变量对应
g_pImmediateContext->UpdateSubresource( g_pCBChangeOnResize, 0, NULL, &cbChangesOnResize, 0, 0 );
return S_OK;
}
//--------------------------------------------------------------------------------------
// Clean up the objects we've created
//--------------------------------------------------------------------------------------
void CleanupDevice()
{
//释放内存
if( g_pImmediateContext ) g_pImmediateContext->ClearState();
if( g_pSamplerLinear ) g_pSamplerLinear->Release();
if( g_pTextureRV ) g_pTextureRV->Release();
if( g_pCBNeverChanges ) g_pCBNeverChanges->Release();
if( g_pCBChangeOnResize ) g_pCBChangeOnResize->Release();
if( g_pCBChangesEveryFrame ) g_pCBChangesEveryFrame->Release();
if( g_pVertexBuffer ) g_pVertexBuffer->Release();
if( g_pIndexBuffer ) g_pIndexBuffer->Release();
if( g_pVertexLayout ) g_pVertexLayout->Release();
if( g_pVertexShader ) g_pVertexShader->Release();
if( g_pPixelShader ) g_pPixelShader->Release();
if( g_pDepthStencil ) g_pDepthStencil->Release();
if( g_pDepthStencilView ) g_pDepthStencilView->Release();
if( g_pRenderTargetView ) g_pRenderTargetView->Release();
if( g_pSwapChain ) g_pSwapChain->Release();
if( g_pImmediateContext ) g_pImmediateContext->Release();
if( g_pd3dDevice ) g_pd3dDevice->Release();
}
//--------------------------------------------------------------------------------------
// Called every time the application receives a message
//--------------------------------------------------------------------------------------
LRESULT CALLBACK WndProc( HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam )
{
PAINTSTRUCT ps;
HDC hdc;
switch( message )
{
case WM_PAINT:
hdc = BeginPaint( hWnd, &ps );
EndPaint( hWnd, &ps );
break;
case WM_DESTROY:
PostQuitMessage( 0 );
break;
default:
return DefWindowProc( hWnd, message, wParam, lParam );
}
return 0;
}
//--------------------------------------------------------------------------------------
// Render a frame
//--------------------------------------------------------------------------------------
void Render()
{
//渲染
// Update our time
static float t = 0.0f;
if( g_driverType == D3D_DRIVER_TYPE_REFERENCE )
{
t += ( float )XM_PI * 0.0125f;
}
else
{
static DWORD dwTimeStart = 0;
DWORD dwTimeCur = GetTickCount();
if( dwTimeStart == 0 )
dwTimeStart = dwTimeCur;
t = ( dwTimeCur - dwTimeStart ) / 1000.0f;
}
// Rotate cube around the origin
g_World = XMMatrixRotationY( t ); // 不停的设置世界变化,从而得到旋转
// Modify the color
g_vMeshColor.x = ( sinf( t * 1.0f ) + 1.0f ) * 0.5f;
g_vMeshColor.y = ( cosf( t * 3.0f ) + 1.0f ) * 0.5f;
g_vMeshColor.z = ( sinf( t * 5.0f ) + 1.0f ) * 0.5f;
//
// Clear the back buffer
//
float ClearColor[4] = { 0.0f, 0.125f, 0.3f, 1.0f }; // red, green, blue, alpha
//清空渲染目标
g_pImmediateContext->ClearRenderTargetView( g_pRenderTargetView, ClearColor );
//
// Clear the depth buffer to 1.0 (max depth)
//
// 重新设置深度模板缓存
g_pImmediateContext->ClearDepthStencilView( g_pDepthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0 );
//
// Update variables that change once per frame
//
CBChangesEveryFrame cb;
cb.mWorld = XMMatrixTranspose( g_World );
cb.vMeshColor = g_vMeshColor;
// 修改g_pCBChangesVeveryFrame
g_pImmediateContext->UpdateSubresource( g_pCBChangesEveryFrame, 0, NULL, &cb, 0, 0 );
//
// Render the cube
//
g_pImmediateContext->VSSetShader( g_pVertexShader, NULL, 0 );
//-------------------------------------------------------
// GPU和CPU是通过发送消息来进行异构编程的
// 从而然数据从CPU流向GPU
// CPU和GPU的数据交换就是ConstantBuffer
//
// 因为我看过《并行程序设计原理》,我也学过《设计模式》所以我从高层看待问题:
// 我将处理器(CPU,GPU)抽象(提取核心本质,而忽略细节),得出结论:处理器由两部份组成:
// A:运算的部分 B:存储的部分
// 所以VSSetConstantBuffers()设置了GPU的存储部分
//-------------------------------------------------------
g_pImmediateContext->VSSetConstantBuffers( 0, 1, &g_pCBNeverChanges );
g_pImmediateContext->VSSetConstantBuffers( 1, 1, &g_pCBChangeOnResize );
g_pImmediateContext->VSSetConstantBuffers( 2, 1, &g_pCBChangesEveryFrame );
//重新设置GPU中的像素着色器
g_pImmediateContext->PSSetShader( g_pPixelShader, NULL, 0 );
//
// GPU和CPU是通过发送消息来进行异构编程的
// A: Constant Buffer
// B: ShaderResource <======> GPU: HLSL中有Texture2D
// C: SamplerState
g_pImmediateContext->PSSetConstantBuffers( 2, 1, &g_pCBChangesEveryFrame );
g_pImmediateContext->PSSetShaderResources( 0, 1, &g_pTextureRV ); // 将纹理从CPU流向GPU
g_pImmediateContext->PSSetSamplers( 0, 1, &g_pSamplerLinear ); //设置GPU中的纹理过滤
//
g_pImmediateContext->DrawIndexed( 36, 0, 0 ); // 将数据流向RenderTargets
//
// Present our back buffer to our front buffer
//
g_pSwapChain->Present( 0, 0 ); //最终呈现效果
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////HLSL////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------
// File: Tutorial07.fx
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//--------------------------------------------------------------------------------------
//---------------------------------------------------
// VS2012和VS2013可以用来对HLSL进行调试
// 我调试过,感觉还行!!
// 我看网上说VS2012和VS2013对HLSL调试是进行的
// 逆向工程,就像反汇编一样!
//-------------------------------------------------
//-----------------------------------------------------------------------------------------------------------
// 在思维上将着色器应当看作一个功能模块,实现它对应的功能。 就像我们编程时编的一个函数一样,
// 将你的数据输入对应的参数,然后返回你想要的结果。只不过这里更为的抽象而已。
// 所谓固定渲染管道,就是一段输入,另一端输出。就像Linux下敲击CmdShell时有一个管道命令一样!
// 而固定管道中,每个部分有自己对应的功能:VertexShader实现顶点的变化MVP(模型视图投影)变换
// HullShader设置曲面细分因子(当然也可以不在HullShader中设置,而使用固定的曲面细分因子)
// DoMainShader GeometryShader(我看的例子中讲的是粒子系统,模仿烟花的爆放) ComputeShader
// PixelShader设置像素的操作,例如颜色、纹理采样等等。
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
// Constant Buffer Variables
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------
// Direct9将Texture2D和SamplerState是绑定在一起的
// Direct10和Direct11将Texture和SamplerState是分离的
//---------------------------------------------------------------
Texture2D txDiffuse : register( t0 ); //纹理
SamplerState samLinear : register( s0 ); //采样方式,它提供了纹理采样的函数Sample()
//-----------------------------------------------------------
//HLSL中声明缓存有两种方式:
// cbuffer: 声明的变量经常与CPU打交道
// tbuffer:声明的变量支持随机访问,通常用于纹理
//-----------------------------------------------------------
//-------------------------------------------------------------------------
// Constant Buffer: 同Cpp文件中使用VSSetContstantBuffer()
// HullSetConstantBuffer()、DSSetConstantBuffer()
// CSSetConstantBuffer()、GSSetConstantBuffer()
// PSSetConstantBuffer()中的数据打交道
//
// 而Direct10中Cpp文件和HLSL中是通过GetVaribleByname()等函数来逆向将HLSL
// 中的变量与Cpp中的变量关联的!!
//------------------------------------------------------------------------
cbuffer cbNeverChanges : register( b0 )
{
matrix View;
};
cbuffer cbChangeOnResize : register( b1 )//register(b1)是第二个,而调用void VSSetConstantBuffers(
// [in] UINT StartSlot,
// [in] UINT NumBuffers,
// [in] ID3D11Buffer *const *ppConstantBuffers
// );
//中的StartSlot就要与这个对应
{
matrix Projection;
};
cbuffer cbChangesEveryFrame : register( b2 )
{
matrix World;
float4 vMeshColor;
};
//--------------------------------------------------------------------------------------
struct VS_INPUT // 因为CPP和HLSL中是通过发送消息来进行CPU和GPU异构的异构编程
// 所有HLSL中的结构体变量要与Cpp文件中的结构体变量在格式上对应
{
float4 Pos : POSITION; // POSITIOIN 变量的语言,位置
float2 Tex : TEXCOORD0;//TEXCOORD0 变量的语言,纹理
};
struct PS_INPUT
{
float4 Pos : SV_POSITION; // SP_POSITION: 系统语义
float2 Tex : TEXCOORD0;
};
//--------------------------------------------------------------------------------------
// Vertex Shader
//--------------------------------------------------------------------------------------
PS_INPUT VS( VS_INPUT input )
{
PS_INPUT output = (PS_INPUT)0;
//--------------------
// 实现世界变换
// 实现视图变换
// 实现透视变换
// ---------------------
output.Pos = mul( input.Pos, World );
output.Pos = mul( output.Pos, View );
output.Pos = mul( output.Pos, Projection );
output.Tex = input.Tex; // 纹理没有操作, 而纹理的操作一般在PixelShader
return output;
}
//--------------------------------------------------------------------------------------
// Pixel Shader
//--------------------------------------------------------------------------------------
float4 PS( PS_INPUT input) : SV_Target
{
return txDiffuse.Sample( samLinear, input.Tex ) * vMeshColor; // 调用SampleState的函数,进行纹理采样
//return float4(1.0f, 0.0f, 0.0f, 1.0f); // 整个模型就变为红色了
}
//////////////////////////////////////////////////////////////////////////////////////////附件几张调试HLSL的图片/////////////////////////////////////////////////////////////////