这个问题可以分为三种情况来考虑:
情况一:root未知,但是每个节点都有parent指针
此时可以分别从两个节点开始,沿着parent指针走向根节点,得到两个链表,然后求两个链表的第一个公共节点,这个方法很简单,不需要详细解释的。
情况二:节点只有左、右指针,没有parent指针,root已知
思路:有两种情况,一是要找的这两个节点(a, b),在要遍历的节点(root)的两侧,那么这个节点就是这两个节点的最近公共父节点;
二是两个节点在同一侧,则 root->left 或者 root->right 为 NULL,另一边返回a或者b。那么另一边返回的就是他们的最小公共父节点。
递归有两个出口,一是没有找到a或者b,则返回NULL;二是只要碰到a或者b,就立刻返回。
// 二叉树结点的描述
typedef struct BiTNode
{
char data;
struct BiTNode *lchild, *rchild; // 左右孩子
}BinaryTreeNode;
// 节点只有左指针、右指针,没有parent指针,root已知
BinaryTreeNode* findLowestCommonAncestor(BinaryTreeNode* root , BinaryTreeNode* a , BinaryTreeNode* b)
{
if(root == NULL)
return NULL;
if(root == a || root == b)
return root;
BinaryTreeNode* left = findLowestCommonAncestor(root->lchild , a , b);
BinaryTreeNode* right = findLowestCommonAncestor(root->rchild , a , b);
if(left && right)
return root;
return left ? left : right;
}
java实现
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
//发现目标节点则通过返回值标记该子树发现了某个目标结点
if(root == null || root == p || root == q) return root;
//查看左子树中是否有目标结点,没有为null
TreeNode left = lowestCommonAncestor(root.left, p, q);
//查看右子树是否有目标节点,没有为null
TreeNode right = lowestCommonAncestor(root.right, p, q);
//都不为空,说明做右子树都有目标结点,则公共祖先就是本身
if(left!=null&&right!=null) return root;
//如果发现了目标节点,则继续向上标记为该目标节点
return left == null ? right : left;
}
}
思路:从根节点开始遍历,如果node1和node2中的任一个和root匹配,那么root就是最低公共祖先。 如果都不匹配,则分别递归左、右子树,如果有一个 节点出现在左子树,并且另一个节点出现在右子树,则root就是最低公共祖先. 如果两个节点都出现在左子树,则说明最低公共祖先在左子树中,否则在右子树
情况三: 二叉树是个二叉查找树,且root和两个节点的值(a, b)已知
// 二叉树是个二叉查找树,且root和两个节点的值(a, b)已知
BinaryTreeNode* findLowestCommonAncestor(BinaryTreeNode* root , BinaryTreeNode* a , BinaryTreeNode* b)
{
char min , max;
if(a->data < b->data)
min = a->data , max = b->data;
else
min = b->data , max = a->data;
while(root)
{
if(root->data >= min && root->data <= max)
return root;
else if(root->data < min && root->data < max)
root = root->rchild;
else
root = root->lchild;
}
return NULL;
}
https://blog.youkuaiyun.com/Hackbuteer1/article/details/8022138