POJ1013 Counterfeit Dollar

POJ1013 Counterfeit Dollar

Description

Sally Jones has a dozen Voyageur silver dollars. However, only eleven of the coins are true silver dollars; one coin is counterfeit even though its color and size make it indistinguishable from the real silver dollars. The counterfeit coin has a different weight from the other coins but Sally does not know if it is heavier or lighter than the real coins.
Happily, Sally has a friend who loans her a very accurate balance scale. The friend will permit Sally three weighings to find the counterfeit coin. For instance, if Sally weighs two coins against each other and the scales balance then she knows these two coins are true. Now if Sally weighs
one of the true coins against a third coin and the scales do not balance then Sally knows the third coin is counterfeit and she can tell whether it is light or heavy depending on whether the balance on which it is placed goes up or down, respectively.
By choosing her weighings carefully, Sally is able to ensure that she will find the counterfeit coin with exactly three weighings.

Input

The first line of input is an integer n (n > 0) specifying the number of cases to follow. Each case consists of three lines of input, one for each weighing. Sally has identified each of the coins with the letters A–L. Information on a weighing will be given by two strings of letters and then one of the words up'',down”, or “even”. The first string of letters will represent the coins on the left balance; the second string, the coins on the right balance. (Sally will always place the same number of coins on the right balance as on the left balance.) The word in the third position will tell whether the right side of the balance goes up, down, or remains even.

Output

For each case, the output will identify the counterfeit coin by its letter and tell whether it is heavy or light. The solution will always be uniquely determined.

Sample Input

1
ABCD EFGH even
ABCI EFJK up
ABIJ EFGH even

Sample Output

K is the counterfeit coin and it is light.

题目大意

有12个硬币,其中一个为假币,11真币,假币不知轻重,现给出三次称量方式(左右盘各有哪几枚硬币)及结果(右边盘子高或低或平),问哪一个是假币,轻还是重。

算法

穷举暴力,每个Case中穷举假设12 * 2 次(12个中某个硬币假设为假币,有两种轻重可能)检查一遍,看到和称量结果一致的假设就输出。

AC代码

#include<stdio.h>
#include<string.h>

typedef enum {left = -1, even = 0, right = 1} weigh;    
//Which side is higher?
typedef enum {light = 0, heavy = 1} Fake;               
//Assumption: fake coin---light or heavy?

typedef struct {
    char Left[10];
    char Right[10];
    weigh Status;
} Balance;                                              
//one balance --- left side right side and status

void GetWeighing(Balance Weighing[]);                   
//Get the weighing result
int TestWeigh(Balance Weighing[], char coin, Fake how); 
//Is our assumption reasonable?
weigh Judge(char * stat);

int main()
{   
    Balance Weighing[3];
    char *Counterfeit[2] = {"light", "heavy"};
    int N;

    scanf("%d", &N);
    for (int i = 0; i < N; i++) {
        GetWeighing(Weighing);
        for (int j = 0; j < 12; j++) {                  
        //test 12 * 2 assumptions
            Fake how = light;
            if (TestWeigh(Weighing, 'A' + j, how)) {
                printf("%c is the counterfeit coin and it is %s.\n", 'A' + j, Counterfeit[(int)how]);
            }
            else {
                how = heavy;
                if (TestWeigh(Weighing, 'A' + j, how)) {
                    printf("%c is the counterfeit coin and it is %s.\n", 'A' + j, Counterfeit[(int)how]);
                }
            }
        }
    }

    return 0;
}

void GetWeighing(Balance Weighing[])
{
    char stat[5];

    for (int i = 0; i < 3; i++) {
        scanf("%s %s", Weighing[i].Left, Weighing[i].Right);
        scanf("%s", stat);
        Weighing[i].Status = Judge(stat);
    }
}

weigh Judge(char * stat)
{
    if (stat[0] == 'e') {
        return even;
    }
    else if (stat[0] == 'u') {
        return right;
    }
    else {
        return left;
    }
}

int TestWeigh(Balance Weighing[], char coin, Fake how)
{
    weigh Shouldbe;
    //result according to the assumption
    int BOOL = 1;

    for (int k = 0; k < 3; k++) {
        char * l = strchr(Weighing[k].Left, coin), * r = strchr(Weighing[k].Right, coin);
        if (l == NULL && r == NULL) {   
            Shouldbe = even;
        }
        else if ((l == NULL && how == light) || (r == NULL && how == heavy)) {
            Shouldbe = right;
        }
        else {
            Shouldbe = left;
        }
        if (Shouldbe != Weighing[k].Status) {
            BOOL = 0;
        }
    }

    return BOOL;
}
【最优潮流】直流最优潮流(OPF)课设(Matlab代码实现)内容概要:本文档主要围绕“直流最优潮流(OPF)课设”的Matlab代码实现展开,属于电力系统优化领域的教学与科研实践内容。文档介绍了通过Matlab进行电力系统最优潮流计算的基本原理与编程实现方法,重点聚焦于直流最优潮流模型的构建与求解过程,适用于课程设计或科研入门实践。文中提及使用YALMIP等优化工具包进行建模,并提供了相关资源下载链接,便于读者复现与学习。此外,文档还列举了大量与电力系统、智能优化算法、机器学习、路径规划等相关的Matlab仿真案例,体现出其服务于科研仿真辅导的综合性平台性质。; 适合人群:电气工程、自动化、电力系统及相关专业的本科生、研究生,以及从事电力系统优化、智能算法应用研究的科研人员。; 使用场景及目标:①掌握直流最优潮流的基本原理与Matlab实现方法;②完成课程设计或科研项目中的电力系统优化任务;③借助提供的丰富案例资源,拓展在智能优化、状态估计、微电网调度等方向的研究思路与技术手段。; 阅读建议:建议读者结合文档中提供的网盘资源,下载完整代码与工具包,边学习理论边动手实践。重点关注YALMIP工具的使用方法,并通过复现文中提到的多个案例,加深对电力系统优化问题建模与求解的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值