41、Dreamweaver AP元素使用与布局教程

Dreamweaver AP元素使用与布局教程

1. AP元素定位基础

1.1 相对定位与绝对定位

相对定位时,设置 Top 属性为100像素,AP元素并非距离浏览器窗口顶部100像素,而是基于HTML原本显示位置向下偏移100像素。而绝对定位能让AP元素精确放置在页面某一位置,例如将绝对定位元素的 Top Left 属性分别设为100和150像素,该元素就会距离浏览器窗口顶部100像素、左侧边缘150像素。

需要注意的是,对于嵌套在另一个设置了相对或绝对定位的 <div> 内的 <div> ,浏览器会根据父 <div> 的位置计算其位置值。比如,页面顶部300像素处有一个AP元素,其内部嵌套的绝对定位元素 Top 位置为20像素,那么该元素并非距离页面顶部20像素,而是距离父AP元素顶部20像素,即距离页面顶部320像素。

1.2 Clip属性

Clip 属性可隐藏AP元素除矩形区域外的部分,但多数情况下应避免使用,因为它仅在制作动画特效时有用。例如,将大图片放入AP元素却只想显示一小部分,虽可使用 Clip 属性,但浏览器仍会下载整个图片。更好的做法是提前准备好合适尺寸的小图片。

Clip 的四个设置( top right </

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值