python中的map, filter, reduce函数

三个函数比较类似,都是应用于序列的内置函数。常见的序列包括list、tuple、str。

1.map函数

map函数会根据提供的函数对指定序列做映射。
定义:
     map(function, sequence[, sequence, ...]) -> list
解析:
     函数的第一个参数是一个函数,function可以理解为是一个一对一或多对一函数,
     剩下的参数是一个或多个序列,
     返回值是一个集合。
作用:对参数序列中的每一个元素调用function函数,返回包含每次function函数返回值的list。

示例:
对一个序列中的每个元素进行平方运算:
   map(lambda x: x ** 2, [1, 2, 3, 4, 5])
返回结果为:
   [1, 4, 9, 16, 25]

在参数存在多个序列时,会依次以每个序列中相同位置的元素做参数调用function函数。
比如要对两个序列中的元素依次求和。
  map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
map返回的list中第一个元素为,参数序列1的第一个元素加参数序列2中的第一个元素(1 + 2),
list中的第二个元素为,参数序列1中的第二个元素加参数序列2中的第二个元素(3 + 4),
依次类推,最后的返回结果为:
    [3, 7, 11, 15, 19]

要注意function函数的参数数量,要和map中提供的集合数量相匹配。
如果集合长度不相等,会以最小长度对所有集合进行截取。

当函数为None时,操作和zip相似:
  map(None, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
返回结果为:
[(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)]

2.filter函数

对指定序列执行过滤操作。
定义:
      filter(function or None, sequence) -> list, tuple, or string
解析:
      function是一个谓词函数,接受一个参数,
      返回布尔值True或False。
作用:
      filter函数会对序列参数sequence中的每个元素调用function函数,
      最后返回的结果包含调用结果为True的元素, 返回值的类型和参数sequence的类型相同

示例:
比如返回序列中的所有偶数:
def is_even(x):
    return x & 1 != 0

filter(is_even, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
返回结果为:
[1, 3, 5, 7, 9]
如果function参数为None,返回结果和sequence参数相同。

3.reduce函数

reduce函数会对参数序列中元素进行累积。
定义: 
     reduce(function, sequence[, initial]) -> value
解析:
     function参数是一个有两个参数的函数,
     reduce依次从sequence中取一个元素,和上一次调用function的结果做参数再次调用function。
     第一次调用function时,如果提供initial参数,会以sequence中的第一个元素和initial作为参数调用function,
     否则会以序列sequence中的前两个元素做参数调用function。
注意:
     function函数不能为None。

示例:
reduce(lambda x, y: x + y, [2, 3, 4, 5, 6], 1)
结果为21(  (((((1+2)+3)+4)+5)+6)  )
reduce(lambda x, y: x + y, [2, 3, 4, 5, 6])
结果为20

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值