题意为有个人拥有几个农场,每个农场有N个地,这些地之间有M*2条通道,有w个虫洞,问他是否可以从某块地出发后经过通道和虫洞从而回到过去。
本题输入描述比较难懂,在对每块农场的描述中,首先是一行表示农场中地的数目N,通道数目M*2,虫洞数目W,让后接下来的M+W行对数据进行描述。有几个农场这个循环重复对应次数。
此外,由于是从任何地出发然后回到该处时时间倒流都可行,所以图不需要联通,只要存在负权环就可以。
//poj 3259 Wormholes
//利用bellman-ford算法检测负权环路的存在性
#include<iostream>
using namespace std;
const int DIS = 88888; //初始距离无穷大
struct sEdge
{
int begin;
int to;
int cost;
};
sEdge pEdge[5300];
int pDistance[1002];
void Init(int M, int W)
{
int s,e,t;
int k = 0;
for (int i = 0; i< M; i++)
{
cin>>s>>e>>t;
pEdge[k].begin = s;
pEdge[k].to = e;
pEdge[k].cost = t;
k++;
pEdge[k].begin = e;
pEdge[k].to = s;
pEdge[k].cost = t;
k++;
}
for (int i = 0; i< W; i++)
{
cin>>s>>e>>t;
pEdge[k].begin = s;
pEdge[k].to = e;
pEdge[k].cost = -t;
k++;
}
}
int Bellman_ford(int N, int M, int W)
{
int nEdgeNum = M*2+W;
int nchange = 0;
int nflag = 0;
for (int i = 0; i< N; i++)
{
nchange = 0;
for (int j = 0; j<nEdgeNum; j++)
{
if (pDistance[pEdge[j].to] > pDistance[pEdge[j].begin] + pEdge[j].cost)
{
pDistance[pEdge[j].to] = pDistance[pEdge[j].begin] + pEdge[j].cost;
nchange = 1;
}
}
if (nchange == 0)
{
break;
}
}
for (int j = 0; j<nEdgeNum; j++)
{
if (pDistance[pEdge[j].to] > pDistance[pEdge[j].begin] + pEdge[j].cost)
{
nflag = 1; //有负权环路
}
}
return nflag;
}
int main()
{
int nfarm;
int N,M,W;
int flag;
cin>>nfarm;
for (int i = 0; i< nfarm; i++)
{
cin>>N>>M>>W;
for (int j =1; j< N+2; j++)
{
pDistance[j]= DIS;
}
pDistance[1] = 0;
Init(M,W);
flag = Bellman_ford(N,M,W);
if (flag == 0)
{
cout<<"NO"<<endl;
}
else
cout<<"YES"<<endl;
}
//system("pause");
return 0;
}